An improvement of the asymptotic iteration method for exactly solvable eigenvalue problems

被引:19
|
作者
Boztosun, I. [1 ]
Karakoc, M. [1 ]
机构
[1] Erciyes Univ, Dept Phys, Fac Arts & Sci, Kayseri, Turkey
关键词
D O I
10.1088/0256-307X/24/11/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a formula that simplifies the original asymptotic iteration method formulation to find the energy eigenvalues for the analytically solvable cases. We then show that there is a connection between the asymptotic iteration and the Nikiforov-Uvarov methods, which both solve the second order linear ordinary differential equations analytically.
引用
收藏
页码:3028 / 3031
页数:4
相关论文
共 50 条
  • [1] Asymptotic iteration method for eigenvalue problems
    Ciftci, H
    Hall, RL
    Saad, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47): : 11807 - 11816
  • [2] SOLUTIONS OF THE QUASI-EXACTLY SOLVABLE MATHIEU POTENTIAL BY THE ASYMPTOTIC ITERATION METHOD
    Panahi, H.
    Baradaran, M.
    Azizian, S. R.
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) : 56 - 64
  • [3] A class of exactly-solvable eigenvalue problems
    Bender, CM
    Wang, QH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (46): : 9835 - 9847
  • [4] Solution of a Novel Quasi-Exactly Solvable Potential via Asymptotic Iteration Method
    Oezer, Okan
    PROGRESS OF THEORETICAL PHYSICS, 2009, 121 (03): : 437 - 443
  • [5] Construction of exact solutions to eigenvalue problems by the asymptotic iteration method
    Ciftci, H
    Hall, RL
    Saad, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05): : 1147 - 1155
  • [6] Superintegrability and quasi-exactly solvable eigenvalue problems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2008, 71 : 925 - 929
  • [7] Superintegrability and quasi-exactly solvable eigenvalue problems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 925 - 929
  • [8] Exactly solvable eigenvalue problems for a nonlocal nonlinear Schrodinger equation
    Matsuno, Y
    INVERSE PROBLEMS, 2002, 18 (04) : 1101 - 1125
  • [9] On an iteration method for eigenvalue problems
    Fernández, FM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23): : 6173 - 6180
  • [10] Eigenvalue problems of non-hermitian systems via improved asymptotic iteration method
    Ozer, Okan
    CHINESE PHYSICS LETTERS, 2008, 25 (09) : 3111 - 3114