Synthesis of CO2-responsive cellulose nanocrystals by surface-initiated Cu(0)-mediated polymerisation

被引:39
作者
Arredondo, Joaquin
Jessop, Philip G. [2 ]
Champagne, Pascale [1 ,3 ]
Bouchard, Jean [4 ]
Cunningham, Michael F. [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada
[3] Queens Univ, Dept Civil Engn, Kingston, ON K7M 9H7, Canada
[4] FPInnovat, 570 St Jean Blvd, Pointe Claire, PQ H9R 3J9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LIVING RADICAL POLYMERIZATION; EMULSION POLYMERIZATION; SWITCHABLE SURFACTANTS; SET-LRP; POLY(2-(DIMETHYLAMINO)ETHYL METHACRYLATE); 2-(DIMETHYLAMINO)ETHYL METHACRYLATE; AMBIENT-TEMPERATURE; GRAFT MODIFICATION; ATRP; COPOLYMERS;
D O I
10.1039/c7gc01798g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cellulose nanocrystals (CNC) were converted into a CO2-responsive composite nanomaterial by grafting poly(dimethylaminoethy methacrylate) (PDMAEMA) and poly(diethylaminoethyl methacrylate) (PDEAEMA) on its surface using a grafting-from approach via surface-initiated copper(0)-mediated polymerisation (SI-Cu(0)-ATRP). The Cu(0)-ATRP homopolymerisation kinetics of these monomers were first studied to determine suitable conditions to perform the grafting step. Reasonable molecular weight control and livingness were observed during the polymerisations. Following functionalization of the CNC with ATRP initiating groups, a grafting-from approach was employed to graft PDMAEMA and PDEAEMA onto the CNC surface. The surface charge of the graft-modified CNC could be reversibly switched by protonation/ deprotonation of the tertiary amine groups simply by sparging with CO2 and N-2, respectively.
引用
收藏
页码:4141 / 4152
页数:12
相关论文
共 76 条
[1]   Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcohol-water solutions mediated by a mixed sulfite/Cu(II)Br2 catalytic system [J].
Abreu, Carlos M. R. ;
Serra, Armenio C. ;
Popov, Anatoliy V. ;
Matyjaszewski, Krzysztof ;
Guliashvili, Tamaz ;
Coelho, Jorge F. J. .
POLYMER CHEMISTRY, 2013, 4 (23) :5629-5636
[2]   Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites [J].
Anzlovar, Alojz ;
Huskic, Miro ;
Zagar, Ema .
CELLULOSE, 2016, 23 (01) :505-518
[3]   Auto-catalyzed acidic desulfation of cellulose nanocrystals [J].
Beck, Stephanie ;
Bouchard, Jean .
NORDIC PULP & PAPER RESEARCH JOURNAL, 2014, 29 (01) :6-14
[4]   Unexpected transesterification of tertiary amine methacrylates during methanolic ATRP at ambient temperature: A cautionary tale [J].
Bories-Azeau, X ;
Armes, SP .
MACROMOLECULES, 2002, 35 (27) :10241-10243
[5]   Preparation and characterization of functionalized cellulose nanocrystals [J].
Boujemaoui, Assya ;
Mongkhontreerat, Surinthra ;
Malmstrom, Eva ;
Carlmark, Anna .
CARBOHYDRATE POLYMERS, 2015, 115 :457-464
[6]   A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates [J].
Capadona, Jeffrey R. ;
Van Den Berg, Otto ;
Capadona, Lynn A. ;
Schroeter, Michael ;
Rowan, Stuart J. ;
Tyler, Dustin J. ;
Weder, Christoph .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :765-769
[7]   Synthesis of well-defined poly(2-(dimethylamino)ethyl methacrylate) under mild conditions and its co-polymers with cholesterol and PEG using Fe(0)/Cu(II) based SARA ATRP [J].
Cordeiro, Rosemeyre A. ;
Rocha, Nuno ;
Mendes, Joana P. ;
Matyjaszewski, Krzysztof ;
Guliashvili, Tamaz ;
Serra, Armenio C. ;
Coelho, Jorge F. J. .
POLYMER CHEMISTRY, 2013, 4 (10) :3088-3097
[8]   An introduction to the principles and fundamentals of CO2-switchable polymers and polymer colloids [J].
Cunningham, Michael F. ;
Jessop, Philip G. .
EUROPEAN POLYMER JOURNAL, 2016, 76 :208-215
[9]   CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications [J].
Darabi, Ali ;
Jessop, Philip G. ;
Cunningham, Michael F. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (15) :4391-4436
[10]   ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent [J].
Dong, Hongchen ;
Matyjaszewski, Krzysztof .
MACROMOLECULES, 2008, 41 (19) :6868-6870