Association Rule Mining using a Bacterial Colony Algorithm

被引:0
作者
da Cunha, Danilo S. [1 ]
Xavier, Rafael S. [1 ]
Ferrari, Daniel G. [1 ]
de Castro, Leandro N. [1 ]
机构
[1] Univ Prebiteriana Mackenzie, Nat Comp Lab LCoN, Sao Paulo, Brazil
来源
2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI) | 2015年
关键词
bio-inspired algorithm; bacterial colony; association rules; data mining; OPTIMIZATION; FOUNDATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bacterial colonies perform a cooperative distributed exploration of the environment. This paper describes bacterial colony networks and their skills to explore resources as a tool for mining association rules in databases. The proposed algorithm is designed to maintain diverse solutions to the problem at hand, and its performance is compared to other well-known bio-inspired algorithms, including a genetic and an immune algorithm (CLONALG) and, also, to Apriori over some benchmarks from the literature.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
Agrawal R., 1994, P 20 INT C VER LARG
[3]  
Alberts B., 2008, Molecular Biology of the Cell, V5th
[4]  
Bache K, 2013, UCI machine learning repository
[5]   Seeking the foundations of cognition in bacteria: From Schrodinger's negative entropy to latent information [J].
Ben Jacob, E ;
Shapira, Y ;
Tauber, AI .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 :495-524
[6]   Learning from Bacteria about Natural Information Processing [J].
Ben-Jacob, Eshel .
NATURAL GENETIC ENGINEERING AND NATURAL GENOME EDITING, 2009, 1178 :78-90
[7]   CHEMOTAXIS AND OPTIMIZATION [J].
BREMERMANN, H .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1974, 297 (05) :397-404
[8]  
Cios W. P. K. J., 2007, DATA MINING KNOWLEDG, VXV
[9]  
da Cunha DS, 2012, LECT NOTES COMPUT SC, V7677, P628, DOI 10.1007/978-3-642-35380-2_73
[10]  
Das S, 2009, STUD COMPUT INTELL, V203, P23, DOI 10.1007/978-3-642-01085-9_2