The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I

被引:57
作者
Matsumoto, K [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
multiple zeta-function; Mellin-Barnes formula; analytic continuation; asymptotic expansion;
D O I
10.1016/S0022-314X(03)00041-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider general multiple zeta-functions of multi-variables, including both Barnes multiple zeta-functions and Euler-Zagier sums as special cases. We prove the meromorphic continuation to the whole space, asymptotic expansions, and upper bound estimates. These results are expected to have applications to some arithmetical L-functions (such as of Hecke and of Shintani). The method is based on the classical Mellin-Barnes integral formula. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:223 / 243
页数:21
相关论文
共 17 条
[1]  
Akiyama S, 2002, DEV MATH, V6, P1
[2]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[3]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[4]  
Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
[5]  
Hida Haruzo., 1993, Elementary theory of -functions and Eisenstein series, London Mathematical Society Student Texts, DOI DOI 10.1017/CBO9780511623691
[6]  
Ivi A., 1985, The Riemann zeta-function
[7]   Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions .1. [J].
Katsurada, M ;
Matsumoto, K .
MATHEMATICA SCANDINAVICA, 1996, 78 (02) :161-177
[8]  
KATSURADA M, 1998, LITH MATH J, V38, P77
[9]  
Katsurada M., 1997, COLLECT MATH, V48, P137
[10]   Asymptotic series for double zeta, double gamma, and Hecke L-functions [J].
Matsumoto, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 :385-405