Size Effect of Organosulfur and In Situ Formed Oligomers Enables High-Utilization Na-Organosulfur Batteries

被引:28
作者
Tang, Shuai [1 ]
Chen, Qiliang [1 ]
Si, Yubing [1 ]
Guo, Wei [1 ]
Mao, Bingwei [2 ,3 ]
Fu, Yongzhu [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
[2] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Dept Chem, iChEM, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
oligomers; organosulfur cathodes; redox flow batteries; size effect; sodium batteries; SULFUR BATTERIES; LITHIUM; POLYSULFIDES; CHALLENGES; 4,4'-THIOBISBENZENETHIOL; CONDUCTIVITY; ADSORPTION; SEPARATOR; STABILITY; MEMBRANES;
D O I
10.1002/adma.202100824
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organosulfurs are promising cathode materials for rechargeable metal batteries due to their high capacities, diverse structures, and electrochemical properties. Herein, the electrochemical behavior of three organosulfur compounds, i.e., 4,4 '-thiobisbenzenethiol (TBBT), 1,4-benzenedithiol (1,4-BDT), and diphenyl disulfide (DPDS), is revealed in room-temperature rechargeable sodium (Na) batteries, which show significantly improved performances when sodiated Nafion membranes are used. Large oligomers of organosulfur can be formed during charging, and they are readily blocked by the nanosized ion-conducting clusters in the Nafion membrane. In addition, large organosulfur monomers can also be blocked. Only 5.4% of TBBT diffuses through the Nafion membrane after 800 h. The Na|TBBT cell sustains 77% of the theoretical capacity after 300 cycles (2420 h). Moreover, the Na|TBBT redox flow cell shows promising rechargeability. Due to the medium molecular size, the organosulfur oligomers are expected to provide a new avenue to develop high-capacity chalcogen cathodes, besides inorganic S and S-containing polymers.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries [J].
Bai, Songyan ;
Kim, Byunghoon ;
Kim, Chungryeol ;
Tamwattana, Orapa ;
Park, Hyeokjun ;
Kim, Jihyeon ;
Lee, Dongwhan ;
Kang, Kisuk .
NATURE NANOTECHNOLOGY, 2021, 16 (01) :77-84
[2]   Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J].
Bauer, I. ;
Kohl, M. ;
Althues, H. ;
Kaskel, S. .
CHEMICAL COMMUNICATIONS, 2014, 50 (24) :3208-3210
[3]   Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators [J].
Bauer, I. ;
Thieme, S. ;
Brueckner, J. ;
Althues, H. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2014, 251 :417-422
[4]  
BERMUDEZ VD, 1993, J MOL STRUCT, V301, P7
[5]   Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries [J].
Bhargav, Amruth ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (37)
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   Porous polybenzimidazole membranes with excellent chemical stability and ion conductivity for direct borohydride fuel cells [J].
Chen, Dongju ;
Yu, Shanshan ;
Liu, Xue ;
Li, Xianfeng .
JOURNAL OF POWER SOURCES, 2015, 282 :323-327
[8]   An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries [J].
Chen, Ke ;
Fang, Ruopian ;
Lian, Zan ;
Zhang, Xiaoyin ;
Tang, Pei ;
Li, Bo ;
He, Kuang ;
Wang, Da-wei ;
Cheng, Hui-Ming ;
Sun, Zhenhua ;
Li, Feng .
ENERGY STORAGE MATERIALS, 2021, 37 :224-232
[9]   Designing solid-liquid interphases for sodium batteries [J].
Choudhury, Snehashis ;
Wei, Shuya ;
Ozhabes, Yalcin ;
Gunceler, Deniz ;
Zachman, Michael J. ;
Tu, Zhengyuan ;
Shin, Jung Hwan ;
Nath, Pooja ;
Agrawal, Akanksha ;
Kourkoutis, Lena F. ;
Arias, Tomas A. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603