We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Chan, Kwokwai
Ma, Ziming Nikolas
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USAZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Liu, Kefeng
Rao, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Rao, Sheng
Yang, Xiaokui
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Math, Evanston, IL 60208 USAZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
机构:
IMPA, Estr Dona Castorina,110 Jardim Bot, BR-22460320 Rio De Janeiro, RJ, BrazilIMPA, Estr Dona Castorina,110 Jardim Bot, BR-22460320 Rio De Janeiro, RJ, Brazil
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAColumbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Felten, Simon
Petracci, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyColumbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Petracci, Andrea
Robins, Sharon
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, CanadaColumbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA