The nondegenerate generalized Kahler Calabi-Yau problem

被引:7
|
作者
Apostolov, Vestislav [1 ]
Streets, Jeffrey [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 777卷
基金
加拿大自然科学与工程研究理事会;
关键词
HOLOMORPHIC SYMPLECTIC-MANIFOLDS; VANISHING THEOREMS; COMPLEX STRUCTURES; GEOMETRY; CONNECTIONS; CURVATURE; EXAMPLES; METRICS; FLOW;
D O I
10.1515/crelle-2021-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [41] Homological mirror symmetry for log Calabi-Yau surfaces
    Hacking, Paul
    Keating, Ailsa
    Lutz, Wendelin
    GEOMETRY & TOPOLOGY, 2022, 26 (08) : 3747 - 3833
  • [42] A Modular Quintic Calabi-Yau Threefold of Level 55
    Lee, Edward
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03): : 616 - 633
  • [43] Smoothing Pairs Over Degenerate Calabi-Yau Varieties
    Chan, Kwokwai
    Ma, Ziming Nikolas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (04) : 2582 - 2614
  • [44] Quasi-isometry and deformations of Calabi-Yau manifolds
    Liu, Kefeng
    Rao, Sheng
    Yang, Xiaokui
    INVENTIONES MATHEMATICAE, 2015, 199 (02) : 423 - 453
  • [45] Noncommutative Resolutions of ADE Fibered Calabi-Yau Threefolds
    Velez, Alexander Quintero
    Boer, Alex
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) : 597 - 619
  • [46] Homogeneous Contact Manifolds and Resolutions of Calabi-Yau Cones
    Correa, Eder M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (03) : 1095 - 1151
  • [47] Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family
    Li, Yang
    ACTA MATHEMATICA, 2022, 229 (01) : 1 - 53
  • [48] On syzygies of Calabi-Yau varieties and varieties of general type
    Niu, Wenbo
    ADVANCES IN MATHEMATICS, 2019, 343 : 756 - 788
  • [49] Deformations of log Calabi-Yau pairs can be obstructed
    Felten, Simon
    Petracci, Andrea
    Robins, Sharon
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1357 - 1374
  • [50] Quasi-asymptotically conical Calabi-Yau manifolds
    Conlon, Ronan J.
    Degeratu, Anda
    Rochon, Frederic
    Sektnan, Lars
    GEOMETRY & TOPOLOGY, 2019, 23 (01) : 29 - 100