共 50 条
The nondegenerate generalized Kahler Calabi-Yau problem
被引:7
|作者:
Apostolov, Vestislav
[1
]
Streets, Jeffrey
[2
]
机构:
[1] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2021年
/
777卷
基金:
加拿大自然科学与工程研究理事会;
关键词:
HOLOMORPHIC SYMPLECTIC-MANIFOLDS;
VANISHING THEOREMS;
COMPLEX STRUCTURES;
GEOMETRY;
CONNECTIONS;
CURVATURE;
EXAMPLES;
METRICS;
FLOW;
D O I:
10.1515/crelle-2021-0016
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
引用
收藏
页码:1 / 48
页数:48
相关论文