The nondegenerate generalized Kahler Calabi-Yau problem

被引:7
|
作者
Apostolov, Vestislav [1 ]
Streets, Jeffrey [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 777卷
基金
加拿大自然科学与工程研究理事会;
关键词
HOLOMORPHIC SYMPLECTIC-MANIFOLDS; VANISHING THEOREMS; COMPLEX STRUCTURES; GEOMETRY; CONNECTIONS; CURVATURE; EXAMPLES; METRICS; FLOW;
D O I
10.1515/crelle-2021-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [31] Smooth asymptotics for collapsing Calabi-Yau metrics
    Hein, Hans-Joachim
    Tosatti, Valentino
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025, 78 (02) : 382 - 499
  • [32] Triviality of fibered Calabi-Yau manifolds without singular fibers
    Tosatti, Valentino
    Zhang, Yuguang
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 905 - 918
  • [33] Special Lagrangian Cycles and Calabi-Yau Transitions
    Collins, Tristan C.
    Gukov, Sergei
    Picard, Sebastien
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 769 - 802
  • [34] THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS
    Meeks, William H., III
    Perez, Joaquin
    Ros, Antonio
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (13) : 2891 - 2956
  • [35] Generalized Kahler-Ricci flow and the classification of nondegenerate generalized Kahler surfaces
    Streets, Jeffrey
    ADVANCES IN MATHEMATICS, 2017, 316 : 187 - 215
  • [36] BCOV TORSION AND DEGENERATIONS OF CALABI-YAU MANIFOLDS
    Xia, Wei
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) : 351 - 369
  • [37] Heavy tails in Calabi-Yau moduli spaces
    Long, Cody
    McAllister, Liam
    McGuirk, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10): : 1 - 46
  • [38] Collapsing Calabi-Yau fibrations and uniform diameter bounds
    Li, Yang
    GEOMETRY & TOPOLOGY, 2023, 27 (01) : 397 - 415
  • [39] Calabi-Yau algebras and the shifted noncommutative symplectic structure
    Chen, Xiaojun
    Eshmatov, Farkhod
    ADVANCES IN MATHEMATICS, 2020, 367
  • [40] CONTINUITY OF EXTREMAL TRANSITIONS AND FLOPS FOR CALABI-YAU MANIFOLDS
    Rong, Xiaochun
    Zhang, Yuguang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 89 (02) : 233 - 269