The nondegenerate generalized Kahler Calabi-Yau problem

被引:7
|
作者
Apostolov, Vestislav [1 ]
Streets, Jeffrey [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Irvine, Dept Math, Rowland Hall, Irvine, CA 92617 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 777卷
基金
加拿大自然科学与工程研究理事会;
关键词
HOLOMORPHIC SYMPLECTIC-MANIFOLDS; VANISHING THEOREMS; COMPLEX STRUCTURES; GEOMETRY; CONNECTIONS; CURVATURE; EXAMPLES; METRICS; FLOW;
D O I
10.1515/crelle-2021-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a Calabi-Yau-type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieri's Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [21] COMPLETION OF THE MODULI SPACE FOR POLARIZED CALABI-YAU MANIFOLDS
    Zhang, Yuguang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (03) : 521 - 544
  • [22] DEGENERATIONS OF RICCI-FLAT CALABI-YAU MANIFOLDS
    Rong, Xiaochun
    Zhang, Yuguang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (04)
  • [23] Asymptotic Curvature of Moduli Spaces for Calabi-Yau Threefolds
    Trenner, Thomas
    Wilson, P. M. H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) : 409 - 428
  • [24] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [25] A Note on Finsler Version of Calabi-Yau Theorem
    Yin, Songting
    Wang, Ruixin
    Zhang, Pan
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [26] Frobenius map on local Calabi-Yau manifolds
    Shapiro, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
  • [27] Calabi-Yau manifolds with isolated conical singularities
    Hein, Hans-Joachim
    Sun, Song
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 73 - 130
  • [28] Generalized Calabi type Kahler surfaces
    Jelonek, Wlodzimierz
    Mulawa, Ewelina
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182
  • [29] Two Moduli Spaces of Calabi-Yau type
    Barros, Ignacio
    Mullane, Scott
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) : 15833 - 15849
  • [30] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)