Spin drift-diffusion transport and its applications in semiconductors

被引:7
|
作者
Miah, M. Idrish [1 ,2 ]
Gray, E. MacA. [1 ]
机构
[1] Griffith Univ, Nanoscale Sci & Technol Ctr, Sch Biomol & Phys Sci, Brisbane, Qld 4111, Australia
[2] Univ Chittagong, Dept Phys, Chittagong 4331, Bangladesh
来源
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE | 2009年 / 13卷 / 5-6期
关键词
Semiconductor; Spin drift-diffusion transport; Drift-diffusion crossover; Spin diffusion length; INJECTION; ELECTRONS; LIGHT;
D O I
10.1016/j.cossms.2009.02.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically the propagation and distribution of electron spin density in semiconductors within the drift-diffusion model in an external electric field. From the solution of the spin drift-diffusion equation, we derive the expressions for spin currents in the down-stream (DS) and up-stream (US) directions. We find that drift and diffusion currents contribute to the spin current and there is an electric field, called the drift-diffusion crossover field, where the drift and diffusion mechanisms contribute equally to the spin current in the DS direction, and that the spin current in the US direction vanishes when the electric field is very large. We calculate the drift-diffusion crossover field and show that the intrinsic spin diffusion length in a semiconductor can be determined directly from it if the temperature, electron density and both the temperature and electron density, respectively, are known for nondegenerate, highly degenerate and degenerate systems. The results will be useful in obtaining transport properties of the electron's spin in semiconductors, the essential information for spintronic technology. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [41] Uniform estimates and uniqueness of stationary solutions to the drift-diffusion model for semiconductors
    Kan, Toru
    Suzuki, Masahiro
    APPLICABLE ANALYSIS, 2019, 98 (10) : 1799 - 1810
  • [42] WEAK SOLUTIONS TO A HYDRODYNAMIC MODEL FOR SEMICONDUCTORS AND RELAXATION TO THE DRIFT-DIFFUSION EQUATION
    MARCATI, P
    NATALINI, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (02) : 129 - 145
  • [43] Spin drift-diffusion for two-subband quantum wells
    de Assis, I. R.
    Raimondi, R.
    Ferreira, G. J.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [44] Energy transport drift-diffusion model for submicrometer GaAs MESFETs
    Yamada, Y
    MICROELECTRONICS JOURNAL, 1997, 28 (05) : 561 - 569
  • [45] Augmented Drift-Diffusion Transport for the Simulation of Advanced SiGe HBTs
    Mueller, M.
    Schroeter, M.
    Jungemann, C.
    Weimer, C.
    2021 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS), 2021,
  • [46] ON THE EXISTENCE AND UNIQUENESS OF TRANSIENT SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (05): : 677 - 703
  • [47] A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors
    Chainais-Hillairet, Claire
    Gisclon, Marguerite
    Juengel, Ansgar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1483 - 1510
  • [48] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Acharyya, Aritra
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (01) : 309 - 320
  • [49] EXISTENCE AND STABILITY OF TIME-PERIODIC SOLUTIONS TO THE DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Kan, Toru
    Suzuki, Masahiro
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (04): : 615 - 638
  • [50] A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors
    Chainais-Hillairet, Claire
    Juengel, Ansgar
    Shpartko, Polina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 819 - 846