Mapping causal circuit dynamics in stroke using simultaneous electroencephalography and transcranial magnetic stimulation

被引:13
作者
Rolle, Camarin E. [1 ,2 ,3 ]
Baumer, Fiona M. [2 ,4 ]
Jordan, Joshua T. [5 ]
Berry, Ketura [6 ]
Garcia, Madelleine [4 ]
Monusko, Karen [1 ]
Trivedi, Hersh [1 ]
Wu, Wei [1 ,2 ,3 ]
Toll, Russell [1 ,2 ,3 ]
Buckwalter, Marion S. [4 ,7 ]
Lansberg, Maarten [4 ]
Etkin, Amit [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Psychiat & Behav Sci, Sch Med, 401 Quarry Rd,MC 5797, Stanford, CA 94305 USA
[2] Stanford Univ, Wu Tsai Neurosci Inst, Stanford, CA 94305 USA
[3] Palo Alto Vet Hlth Care Adm, Sierra Pacific Mental Illness Res Educ & Clin Ctr, Palo Alto, CA 94304 USA
[4] Stanford Univ, Dept Neurol & Neurol Sci, Sch Med, Stanford, CA 94305 USA
[5] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[6] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[7] Stanford Univ, Dept Neurosurg, Sch Med, Stanford, CA 94305 USA
关键词
Stroke; TMS-EEG; Connectivity; Motor cortex; Beta; wPLI; CONTRALESIONAL MOTOR CORTEX; INTERHEMISPHERIC INTERACTIONS; CORTICAL EXCITABILITY; PREMOTOR CORTEX; HAND MOVEMENTS; EEG; TMS; RECOVERY; BRAIN; CONNECTIVITY;
D O I
10.1186/s12883-021-02319-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Motor impairment after stroke is due not only to direct tissue loss but also to disrupted connectivity within the motor network. Mixed results from studies attempting to enhance motor recovery with Transcranial Magnetic Stimulation (TMS) highlight the need for a better understanding of both connectivity after stroke and the impact of TMS on this connectivity. This study used TMS-EEG to map the causal information flow in the motor network of healthy adult subjects and define how stroke alters these circuits. Methods Fourteen stroke patients and 12 controls received TMS to two sites (bilateral primary motor cortices) during two motor tasks (paretic/dominant hand movement vs. rest) while EEG measured the cortical response to TMS pulses. TMS-EEG based connectivity measurements were derived for each hemisphere and the change in connectivity (Delta C) between the two motor tasks was calculated. We analyzed if Delta C for each hemisphere differed between the stroke and control groups or across TMS sites, and whether Delta C correlated with arm function in stroke patients. Results Right hand movement increased connectivity in the left compared to the right hemisphere in controls, while hand movement did not significantly change connectivity in either hemisphere in stroke. Stroke patients with the largest increase in healthy hemisphere connectivity during paretic hand movement had the best arm function. Conclusions TMS-EEG measurements are sensitive to movement-induced changes in brain connectivity. These measurements may characterize clinically meaningful changes in circuit dynamics after stroke, thus providing specific targets for trials of TMS in post-stroke rehabilitation.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery Mechanisms After Stroke [J].
Dimyan, Michael A. ;
Cohen, Leonardo G. .
NEUROREHABILITATION AND NEURAL REPAIR, 2010, 24 (02) :125-135
[22]   Targeting depression circuitry with H1 coil Transcranial Magnetic Stimulation: a retrospective circuit mapping study [J].
Baldi, Samantha ;
Chiulli, Nicole ;
Palm, Stephan ;
Frandsen, Summer ;
Pell, Gaby S. ;
Zibman, Samuel ;
Rodriguez-Ponde, Josias ;
Brown, Joshua C. ;
Siddiqi, Shan H. .
NEUROPSYCHOPHARMACOLOGY, 2025,
[23]   The effect of repetitive and Deep Transcranial Magnetic Stimulation on quantitative electroencephalography in major depressive disorder [J].
Ilhan, Reyhan ;
Arikan, Mehmet Kemal .
FRONTIERS IN PSYCHIATRY, 2025, 15
[24]   Transcranial magnetic stimulation implementation on stroke prognosis [J].
Stella Karatzetzou ;
Dimitrios Tsiptsios ;
Aikaterini Terzoudi ;
Nikolaos Aggeloussis ;
Konstantinos Vadikolias .
Neurological Sciences, 2022, 43 :873-888
[25]   Research hotspots and global trends in transcranial magnetic stimulation for stroke neurorestoration: A 30-year bibliometric analysis [J].
Li, Haozheng ;
Guan, Chong ;
Fang, Dongxiang ;
Yang, Yang ;
Hsieh, Mengying ;
Xu, Zhiyuan ;
Yang, Qing ;
Wu, Yi ;
Hu, Ruiping .
JOURNAL OF NEURORESTORATOLOGY, 2025, 13 (01)
[26]   Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback [J].
Tervo, Aino E. ;
Nieminen, Jaakko O. ;
Lioumis, Pantelis ;
Metsomaa, Johanna ;
Souza, Victor H. ;
Sinisalo, Heikki ;
Stenroos, Matti ;
Sarvas, Jukka ;
Ilmoniemi, Risto J. .
BRAIN STIMULATION, 2022, 15 (02) :523-531
[27]   Effects of High Frequency Repetitive Transcranial Magnetic Stimulation on Function in Subacute Stroke Patients [J].
Cha, Hyun-Gyu ;
Kim, Myoung-Kwon ;
Nam, Hyoung-Chun ;
Ji, Sang-Goo .
JOURNAL OF MAGNETICS, 2014, 19 (02) :192-196
[28]   Probing regional cortical excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling [J].
Raffin, Estelle ;
Harquel, Sylvain ;
Passera, Brice ;
Chauvin, Alan ;
Bougerol, Thierry ;
David, Olivier .
HUMAN BRAIN MAPPING, 2020, 41 (10) :2741-2761
[29]   Effects of 20Hz Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness: A Resting-State Electroencephalography Study [J].
He, Fangping ;
Wu, Min ;
Meng, Fanxia ;
Hu, Yangfan ;
Gao, Jian ;
Chen, Zhongqin ;
Bao, Wangxiao ;
Liu, Kehong ;
Luo, Benyan ;
Pan, Gang .
NEURAL PLASTICITY, 2018, 2018
[30]   Examining cortical dynamics and connectivity with simultaneous single-pulse transcranial magnetic stimulation and fast optical imaging [J].
Parks, Nathan A. ;
Maclin, Edward L. ;
Low, Kathy A. ;
Beck, Diane M. ;
Fabiani, Monica ;
Gratton, Gabriele .
NEUROIMAGE, 2012, 59 (03) :2504-2510