MODULE JOHNSON AMENABILITY OF CERTAIN BANACH ALGEBRAS

被引:0
作者
Sahami, Amir [1 ]
Shariati, Seyedeh Fatemeh [2 ]
Pourabbas, Abdolrasoul [3 ]
机构
[1] Ilam Univ, Fac Basic Sci, Dept Math, POB 69315-516, Ilam, Iran
[2] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
[3] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2021年 / 83卷 / 02期
关键词
Banach algebra; Module Johnson amenability; Matrix algebra; Semi-group algebra;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the new notion module Johnson amenabil-ity for a Banach algebra which is a Banach module over another Banach algebra with compatible actions. We study the relations between this new notion and other various notions of module amenability. We characterize the module Johnson amenability of l(1) (S) as an l(1) (E)-module, for an inverse semigroup S with subsemigroup E of idempotents. We investigate the module Johnson amenability of l(1) (S), whenever S is a Brandt semigroup or bicyclic semigroup or N with maximum as its product. As application we show that for every non-empty set Lambda, M-Lambda(C) as an A-module is module Johnson amenable if and only if Lambda is finite, where A - {[a(i,j)] is an element of M-Lambda(C) vertical bar for all(i) not equal j, a(i,j) = 0}.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 15 条
[1]   Module amenability for semigroup algebras [J].
Amini, M .
SEMIGROUP FORUM, 2004, 69 (02) :243-254
[2]   Module amenability of the second dual and module topological center of semigroup algebras [J].
Amini, Massoud ;
Bodaghi, Abasalt ;
Bagha, Davood Ebrahimi .
SEMIGROUP FORUM, 2010, 80 (02) :302-312
[3]   Johnson Pseudo-Contractibility of Certain Banach Algebras and Their Nilpotent Ideals [J].
Askari-Sayah, M. ;
Pourabbas, A. ;
Sahami, A. .
ANALYSIS MATHEMATICA, 2019, 45 (03) :461-473
[4]  
Bodaghi A., 2017, AN STIINT U AI I CUZ, P449
[5]   Module character amenability of Banach algebras [J].
Bodaghi, Abasalt ;
Amini, Massoud .
ARCHIV DER MATHEMATIK, 2012, 99 (04) :353-365
[6]  
Dales H. G., 2000, BANACH ALGEBRAS AUTO
[7]   AMENABILITY OF INVERSE SEMIGROUPS AND THEIR SEMIGROUP ALGEBRAS [J].
DUNCAN, J ;
NAMIOKA, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 80 :309-321
[8]  
Howie J. M., 1976, London Math. Soc. Monographs
[10]  
Kelley J. L., 1975, Graduate Texts in Mathematics