Stability of a Class of Impulsive Neutral Stochastic Functional Partial Differential Equations

被引:0
作者
Liu, Yue [1 ]
Ruan, Dehao [2 ,3 ]
机构
[1] Hunan Inst Technol, Sch Econ & Management, Hengyang 421000, Hunan, Peoples R China
[2] Guangzhou Int Inst Finance, Guangzhou 510405, Guangdong, Peoples R China
[3] Guangzhou Univ, Guangzhou 510405, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL BROWNIAN-MOTION; EXPONENTIAL STABILITY; EVOLUTION-EQUATIONS; ASYMPTOTIC STABILITY; MILD SOLUTIONS; FIXED-POINTS; RESPECT; DRIVEN; MODEL;
D O I
10.1155/2020/9051396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of impulsive neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion is investigated. Under some suitable assumptions, the pth moment exponential stability is discussed by means of the fixed-point theorem. Our results also improve and generalize some previous studies. Moreover, one example is given to illustrate our main results.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
Anguraj A., 2010, Journal of Applied Mathematics and Informatics, V28, P739
[3]   A new equilibrium trading model with asymmetric information [J].
Bao, Lianzhang ;
Zhao, Guangliang ;
Jin, Zhuo .
QUANTITATIVE FINANCE AND ECONOMICS, 2018, 2 (01) :217-229
[4]   Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space [J].
Boufoussi, Brahim ;
Hajji, Salah .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) :1549-1558
[5]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[6]   A note on exponential stability for impulsive neutral stochastic partial functional differential equations [J].
Chen, Huabin ;
Zhu, Chuanxi ;
Zhang, Yingying .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 :139-147
[7]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[8]  
Da Prato G., 1992, Encyclopedia of Mathematics and Its Applications, DOI DOI 10.1017/CBO9781107295513
[9]   Comparison: Binomial model and Black Scholes model [J].
Dar, Amir Ahmad ;
Anuradha, N. .
QUANTITATIVE FINANCE AND ECONOMICS, 2018, 2 (01) :230-245
[10]   Spatio-Temporal Variability in a Turbid and Dynamic Tidal Estuarine Environment (Tasmania, Australia): An Assessment of MODIS Band 1 Reflectance [J].
Fischer, Andrew M. ;
Pang, Daniel ;
Kidd, Ian M. ;
Moreno-Madrinan, Max J. .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (11)