Intermittency properties in a hyperbolic Anderson problem

被引:23
作者
Dalang, Robert C. [1 ]
Mueller, Carl [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 04期
关键词
Stochastic wave equation; Stochastic partial differential equations; Moment Lyapunov exponents; Intermittency; Stochastic heat equation; STOCHASTIC WAVE-EQUATION; MODEL; DIMENSIONS;
D O I
10.1214/08-AIHP199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotics of the even moments of solutions to a stochastic wave equation in spatial dimension 3 with linear multiplicative spatially homogeneous Gaussian noise that is white in time. Our main theorem states that these moments grow more quickly than one might expect. This phenomenon is well known for parabolic stochastic partial differential equations, under the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbolic equations. For comparison, we also derive bounds on moments of the solution to the stochastic heat equation with the same linear multiplicative noise.
引用
收藏
页码:1150 / 1164
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2001, Random Oper. Stochastic Equations, DOI 10.1515/rose.2001.9.1.77
[2]  
CARMONA R, 1994, MEM AM MATH SOC, V108, P1
[3]   The non-linear stochastic wave equation in high dimensions [J].
Conus, Daniel ;
Dalang, Robert C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :629-670
[4]   Quenched to annealed transition in the parabolic Anderson problem [J].
Cranston, M. ;
Molchanov, S. .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) :177-193
[5]   Lyapunov exponent for the parabolic anderson model with levy noise [J].
Cranston, M ;
Mountford, TS ;
Shiga, T .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) :321-355
[6]  
Dalang RC, 1998, ANN PROBAB, V26, P187
[7]  
DALANG RC, 2009, MEM AM MATH IN PRESS
[8]  
Dalang Robert, 1999, Electron. J. Probab., V4, P1, DOI DOI 10.1214/EJP.V4-43
[9]   A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other p.d.e.'s [J].
Dalang, Robert C. ;
Mueller, Carl ;
Tribe, Roger .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4681-4703
[10]   Geometric characterization of intermittency in the parabolic Anderson model [J].
Gaertner, Juergen ;
Koenig, Wolfgang ;
Molchanov, Stanislav .
ANNALS OF PROBABILITY, 2007, 35 (02) :439-499