On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral

被引:33
作者
Hu, Xi-Mei [1 ]
Tian, Jing-Feng [2 ]
Chu, Yu-Ming [3 ]
Lu, Yan-Xia [2 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Baoding, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Baoding, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou, Peoples R China
关键词
Cauchy-Schwarz inequality; Diamond-alpha integral; Time scales; HERMITE-HADAMARD TYPE; TIME SCALES; CONVEXITY;
D O I
10.1186/s13660-020-2283-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some new Cauchy-Schwarz inequalities for N-tuple diamond-alpha integral on time scales. The obtained results improve and generalize some Cauchy-Schwarz type inequalities given by many authors.
引用
收藏
页数:15
相关论文
共 37 条
[1]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[2]  
Agarwal R., 2014, DYNAMIC INEQUALITIES
[3]   A two-weight inequality for essentially well localized operators with general measures [J].
Benge, Philip .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :1506-1518
[4]  
Bohner M., 2001, Dynamic Equations On Time Scales
[5]   NEW EXPLICIT ROUNDS ON GAMIDOV TYPE INTEGRAL INEQUALITIES ON TIME SCALES AND APPLICATIONS [J].
Boukerrioua, Khaled ;
Diabi, Dallel ;
Meziri, Imen .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03) :807-825
[6]   Generalized integral inequalities on time scales [J].
Fayyaz, Tooba ;
Irshad, Nazia ;
Khan, Asif R. ;
Rahman, Ghaus Ur ;
Roqia, Gholam .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[7]  
Greub W., 1959, Proc. Amer. Math. Soc., V10, P407
[8]   Differential and difference calculus - Unified! [J].
Hilger, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) :2683-2694
[9]  
Hilger S., 1988, THESIS U WURZBURG
[10]  
Hilger S., 1990, RESULTS MATH, V18, P18, DOI [10.1007/BF03323153, DOI 10.1007/BF03323153]