Improvement of Thermotolerance of Zymomonas mobilis by Genes for Reactive Oxygen Species-Scavenging Enzymes and Heat Shock Proteins

被引:7
作者
Anggarini, Sakunda [1 ]
Murata, Masayuki [1 ]
Kido, Keisuke [2 ]
Kosaka, Tomoyuki [1 ,2 ,3 ]
Sootsuwan, Kaewta [4 ]
Thanonkeo, Pornthap [5 ]
Yamada, Mamoru [1 ,2 ,3 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Div Life Sci, Ube, Yamaguchi, Japan
[2] Yamaguchi Univ, Fac Agr, Dept Biol Chem, Yamaguchi, Japan
[3] Yamaguchi Univ, Res Ctr Thermotolerant Microbial Resources, Yamaguchi, Japan
[4] Rajamangala Univ Technol Isan, Fac Agroind Technol, Kalasin, Thailand
[5] Khon Kaen Univ, Fac Technol, Dept Biotechnol, Khon Kaen, Thailand
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
critical high temperature; thermotolerance; reactive oxygen species-scavenging enzyme; heat shock protein; Zymomonas mobilis; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; STRESS; SUBSTRATE; MECHANISM; PROTEASE; FERMENTATION; THIOREDOXIN; REDUCTASE;
D O I
10.3389/fmicb.2019.03073
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Thermotolerant genes, which are essential for survival at a high temperature, have been identified in three mesophilic microbes, including Zymomonas mobilis. Contrary to expectation, they include only a few genes for reactive oxygen species (ROS)-scavenging enzymes and heat shock proteins, which are assumed to play key roles at a critical high temperature (CHT) as an upper limit of survival. We thus examined the effects of increased expression of these genes on the cell growth of Z. mobilis strains at its CHT. When overexpressed, most of the genes increased the CHT by about one degree, and some of them enhanced tolerance against acetic acid. These findings suggest that ROS-damaged molecules or unfolded proteins that prevent cell growth are accumulated in cells at the CHT.
引用
收藏
页数:14
相关论文
共 58 条
[1]   High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? [J].
Abdel-Banat, Babiker M. A. ;
Hoshida, Hisashi ;
Ano, Akihiko ;
Nonklang, Sanom ;
Akada, Rinji .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) :861-867
[2]  
AIBA H, 1981, J BIOL CHEM, V256, P1905
[3]   Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ [J].
Al Refaii, Abdalla ;
Alix, Jean-Herve .
MOLECULAR MICROBIOLOGY, 2009, 71 (03) :748-762
[4]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[5]   Stress tolerance: The key to effective strains of industrial baker's yeast [J].
Attfield, PV .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1351-1357
[6]   Structure and activity of ClpB from Escherichia coli -: Role of the amino- and carboxyl-terminal domains [J].
Barnett, ME ;
Zolkiewska, A ;
Zolkiewski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37565-37571
[7]   Yeast selection for fuel ethanol production in Brazil [J].
Basso, Luiz C. ;
de Amorim, Henrique V. ;
de Oliveira, Antonio J. ;
Lopes, Mario L. .
FEMS YEAST RESEARCH, 2008, 8 (07) :1155-1163
[8]   Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation [J].
Baytshtok, Vladimir ;
Chen, Jiejin ;
Glynn, Steven E. ;
Nager, Andrew R. ;
Grant, Robert A. ;
Baker, Tania A. ;
Sauer, Robert T. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (14) :5695-5704
[9]   Modification of Saccharomyces cerevisiae thermotolerance following rapid exposure to acid stress [J].
Carmelo, V ;
Santos, R ;
Viegas, CA ;
Sa-Correia, I .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1998, 42 (03) :225-230
[10]   Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548 [J].
Charoensuk, Kannikar ;
Sakurada, Tomoko ;
Tokiyama, Amina ;
Murata, Masayuki ;
Kosaka, Tomoyuki ;
Thanonkeo, Pornthap ;
Yamada, Mamoru .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10