DOMAIN DECOMPOSITION METHOD FOR CRACK PROBLEMS WITH NONPENETRATION CONDITION

被引:16
作者
Rudoy, Evgeny [1 ]
机构
[1] Novosibirsk State Univ, Lavrentyev Inst Hydrodynam SB RAS, Novosibirsk 630090, Russia
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 04期
关键词
Crack; nonpenetration condition; domain decomposition method; Lagrange multipliers; Uzawa's algorithm; CONTACT PROBLEMS; ALGORITHM; FRICTION; SIGNORINI;
D O I
10.1051/m2an/2015064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work deals with an iteration method for numerical solving the equilibrium problem of two-dimensional elastic body with a crack under the nonpenetration condition. The method is based on the domain decomposition and Uzawa's algorithm. To construct an algorithm, the domain is partitioned into two subdomains whose common boundary contains the crack. In each subdomain the linear problems are solved. We use Lagrangian multipliers to couple the solutions and provide the nonpenetration condition on the crack.
引用
收藏
页码:995 / 1009
页数:15
相关论文
共 35 条
[1]  
Allaire G., 2007, Numerical analysis and optimization
[2]  
[Anonymous], 1968, Functional Analysis
[3]  
[Anonymous], 1988, Stud. Appl. Math., DOI DOI 10.1137/1.9781611970845
[4]  
[Anonymous], 1971, Optimisation. Theorie et Algorithmes
[5]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[6]  
Astrakhantsev G. P., 1998, COMP MATH MATH PHYS, V38, P1686
[7]  
Bach M, 2000, MATH METHOD APPL SCI, V23, P515, DOI 10.1002/(SICI)1099-1476(200004)23:6<515::AID-MMA122>3.0.CO
[8]  
2-S
[9]   A Neumann-Neumann domain decomposition algorithm for the Signorini problem [J].
Bayada, G ;
Sabil, J ;
Sassi, T .
APPLIED MATHEMATICS LETTERS, 2004, 17 (10) :1153-1159
[10]   Convergence of a Neumann-Dirichlet algorithm for tow-body contact problems with non local Coulomb's friction law [J].
Bayada, Guy ;
Sabil, Jalila ;
Sassi, Taoufik .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02) :243-262