High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics

被引:128
作者
Jin, Huanyu [1 ]
Zhou, Limin [2 ]
Mak, Chee Leung [1 ]
Huang, Haitao [1 ]
Tang, Wing Man [1 ]
Chan, Helen Lai Wa [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Functionalized carbon fiber thread; Asymmetric fiber-shaped supercapacitor; Wearable/stretchable electronics; ALL-SOLID-STATE; CORE-SHELL NANOWIRES; HIGH-ENERGY DENSITY; ASYMMETRIC SUPERCAPACITORS; YARN SUPERCAPACITORS; HIGH-POWER; LARGE-AREA; GRAPHENE; PAPER; TRANSISTORS;
D O I
10.1016/j.nanoen.2014.11.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fiber-shaped supercapacitor (FSC) is a promising energy storage device for wearable/stretchable electronics by virtue of its unique features such as high flexibility, knittability, small-size and lightweight. However, the energy density of most FSC devices is limited by the relatively low operating voltage. Herein, we develop a solid-state asymmetric fiber-shaped supercapacitor made of carbon fiber thread@polyaniline and functionalized carbon fiber thread electrodes with high operating voltage (1.6 V). The as-prepared device shows a volumetric energy density up to 2 mWh cm(-3) which is higher than/compatible to most reported FSCs. The maximum power density of the device is 11 W cm(-3), which is comparable to typical commercial supercapacitors. Other than good rate capability, long cycle life and high volumetric capacitance, the proposed device has excellent flexibility. It can be embedded in a glove using a traditional weaving technology without degrading its capacitive performance at various bending conditions. To demonstrate the potential of our supercapacitor for stretchable electronics, we incorporate the device into a conventional elastic thread to form a stretchable supercapacitor. The capacitance of the stretchable device is well maintained even after stretching up to 100%, demonstrating its excellent stretchability. These promising results demonstrate the proposed supercapacitor has great potential as an efficient storage device for flexible and wearable electronics applications. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:662 / 670
页数:9
相关论文
共 55 条
[1]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[2]   Pentacene-based radio-frequency identification circuitry [J].
Baude, PF ;
Ender, DA ;
Haase, MA ;
Kelley, TW ;
Muyres, DV ;
Theiss, SD .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3964-3966
[3]   Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (47) :23584-23590
[4]   Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores [J].
Choi, Changsoon ;
Lee, Jae Ah ;
Choi, A. Young ;
Kim, Youn Tae ;
Lepro, Xavier ;
Lima, Marcio D. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
ADVANCED MATERIALS, 2014, 26 (13) :2059-2065
[5]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[6]   Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes [J].
Dong, Xiaoli ;
Guo, Ziyang ;
Song, Yanfang ;
Hou, Mengyan ;
Wang, Jianqiang ;
Wang, Yonggang ;
Xia, Yongyao .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (22) :3405-3412
[7]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   Torsional Carbon Nanotube Artificial Muscles [J].
Foroughi, Javad ;
Spinks, Geoffrey M. ;
Wallace, Gordon G. ;
Oh, Jiyoung ;
Kozlov, Mikhail E. ;
Fang, Shaoli ;
Mirfakhrai, Tissaphern ;
Madden, John D. W. ;
Shin, Min Kyoon ;
Kim, Seon Jeong ;
Baughman, Ray H. .
SCIENCE, 2011, 334 (6055) :494-497