Kahan Discretizations of Skew-Symmetric Lotka-Volterra Systems and Poisson Maps

被引:2
作者
Evripidou, C. A. [1 ,2 ]
Kassotakis, P. [1 ]
Vanhaecke, P. [3 ]
机构
[1] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
[3] Univ Poitiers, Lab Math & Applicat, UMR 7348 CNRS, 11 Blvd Marie & Pierre Curie,Teleport 2 BP 30179, F-86962 Futuroscope, France
关键词
Lotka-Volterra systems; Graphs; Integrability;
D O I
10.1007/s11040-021-09399-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kahan discretization of the Lotka-Volterra system, associated with any skew-symmetric graph Gamma, leads to a family of rational maps, parametrized by the step size. When these maps are Poisson maps with respect to the quadratic Poisson structure of the Lotka-Volterra system, we say that the graph Gamma has the Kahan-Poisson property. We show that if Gamma is connected, it has the Kahan-Poisson property if and only if it is a cloning of a graph with vertices 1,2, ... , n, with an arc i -> j precisely when i < j, and with all arcs having the same value. We also prove a similar result for augmented graphs, which correspond with deformed Lotka-Volterra systems and show that the obtained Lotka-Volterra systems and their Kahan discretizations are superintegrable as well as Liouville integrable.
引用
收藏
页数:28
相关论文
共 8 条
[1]  
Evripidou C., 2020, ARXIV201016180MATHPH ARXIV201016180MATHPH
[2]   Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems [J].
Evripidou, C. A. ;
Kassotakis, P. ;
Vanhaecke, P. .
REGULAR & CHAOTIC DYNAMICS, 2017, 22 (06) :721-739
[3]   INTEGRABLE REDUCTIONS OF THE DRESSING CHAIN [J].
Evripidou, Charalampos ;
Kassotakis, Pavlos ;
Vanhaecke, Pol .
JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02) :277-306
[4]   Discretization of the Euler top [J].
Hirota, R ;
Kimura, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (03) :627-630
[5]  
Kahan W., 1993, UNCONVENTIONAL UNPUB
[6]   Discretization of the Lagrange top [J].
Kimura, K ;
Hirota, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (10) :3193-3199
[7]  
Laurent-Gengoux C., 2013, FUNDAMENTAL PRINCIPL, V347
[8]   Integrable and superintegrable systems associated with multi-sums of products [J].
van der Kamp, Peter H. ;
Kouloukas, Theodoros E. ;
Quispel, G. R. W. ;
Tran, Dinh T. ;
Vanhaecke, Pol .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2172)