Ergodicity of stochastic differential equations with jumps and singular coefficients

被引:68
作者
Xie, Longjie [1 ]
Zhang, Xicheng [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221000, Jiangsu, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 01期
关键词
Pathwise uniqueness; Krylov's estimate; Zvonkin's transformation; Ergodicity; Heat kernel; PATHWISE UNIQUENESS; SOBOLEV DIFFUSION; PARABOLIC EQUATIONS; SDES DRIVEN; L; VY NOISE; DRIFT; FLOWS; OPERATORS;
D O I
10.1214/19-AIHP959
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show the strong well-posedness of SDEs driven by general multiplicative Levy noises with Sobolev diffusion and jump coefficients and integrable drifts. Moreover, we also study the strong Feller property, irreducibility as well as the exponential ergodicity of the corresponding semigroup when the coefficients are time-independent and singular dissipative. In particular, the large jump is allowed in the equation. To achieve our main results, we present a general approach for treating the SDEs with jumps and singular coefficients so that one just needs to focus on Krylov's a priori estimates for SDEs.
引用
收藏
页码:175 / 229
页数:55
相关论文
共 58 条
[21]   Pathwise uniqueness and continuous dependence for SDEs with non-regular drift [J].
Fedrizzi, E. ;
Flandoli, F. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2011, 83 (03) :241-257
[22]   Well-posedness of the transport equation by stochastic perturbation [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
INVENTIONES MATHEMATICAE, 2010, 180 (01) :1-53
[23]  
Goldys B., 2006, LECT NOTES PURE APPL, V245, P115
[24]   On stochastic differential equations with locally unbounded drift [J].
Gyöngy, I ;
Martínez, T .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) :763-783
[25]   On the construction and Malliavin differentiability of solutions of Levy noise driven SDE's with singular coefficients [J].
Haadem, Sven ;
Proske, Frank .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :5321-5359
[26]  
Hairer M., INTRO STOCHASTIC PDE
[27]  
Hasminskii R. Z., 1980, STOCHASTIC STABILITY
[28]   Lq(Lp)-theory of parabolic pdes with variable coefficients [J].
Kim, Kyeong-Hun .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) :169-190
[29]   A discrete stochastic Gronwall lemma [J].
Kruse, Raphael ;
Scheutzow, Michael .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 143 :149-157
[30]  
KRYLOV N. V., 1980, APPL MATH, V14