Isogeometric Analysis for Electromagnetic Problems

被引:28
作者
Vazquez, Rafael [1 ]
Buffa, Annalisa [1 ]
机构
[1] Natl Res Ctr CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
关键词
Edge elements; eigenvalue problem; isogeometric analysis; Maxwell equations; FINITE-ELEMENTS; MAXWELL EQUATIONS; DOMAINS;
D O I
10.1109/TMAG.2010.2044563
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Isogeometric analysis (IGA) is a novel discretization method, introduced by Hughes et al., which is based on nonuniform rational B-splines (NURBS). Among other features, IGA uses directly the geometry description coming from computer-aided design software without approximation, and the analysis is performed using shape functions of variable (possibly high) regularity. In this paper we propose a new discretization scheme based on continuous B-splines, adapting the IGA to the solution of Maxwell's equations. We present extensive numerical results to show that our scheme is free of spurious modes, and that it approximates singular solutions in domains with reentrant corners and edges.
引用
收藏
页码:3305 / 3308
页数:4
相关论文
共 10 条
[1]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[2]  
BUFFA A, SIAM J NUMER A UNPUB
[3]  
BUFFA A, COMPUT METHODS APPL, V199, P1143
[4]  
Costabel M, 2003, LECT NOTES COMP SCI, V31, P125
[5]   Weighted regularization of Maxwell equations in polyhedral domains - A rehabilitation of Nodal finite elements [J].
Costabel, M ;
Dauge, M .
NUMERISCHE MATHEMATIK, 2002, 93 (02) :239-277
[6]   Singular higher order complete vector bases for finite methods [J].
Graglia, RD ;
Lombardi, G .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (07) :1672-1685
[7]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195
[8]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[9]  
Piegl L, 1996, The Nurbs Book
[10]  
ZAGLMAYR S., 2006, Ph.D. thesis