Uniqueness of Nonnegative Solutions to Elliptic Differential Inequalities on Finsler Manifolds

被引:0
作者
Xiong, Changwei [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Uniqueness of nonnegative solutions; Elliptic differential inequality; Finsler measure space; LIOUVILLE THEOREMS; POSITIVE SOLUTIONS; NONEXISTENCE; FLOW;
D O I
10.1007/s11118-019-09801-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of elliptic differential inequalities involving Finsler p-Laplacian and a positive potential function on forward geodesically complete noncompact Finsler measure spaces with finite reversibility. Under various volume growth conditions concerning geodesic balls with a given center and the potential function, we prove that the only nonnegative weak solution of the differential inequalities is identically zero.
引用
收藏
页码:1145 / 1163
页数:19
相关论文
共 33 条
[1]  
[Anonymous], 1998, Elliptic Partial Differential Equations of Second Order
[2]  
Bao D., 2012, An Introduction to Riemann-Finsler Geometry, V200
[3]   Liouville Theorems for Some Nonlinear Inequalities [J].
Caristi, G. ;
D'Ambrosio, L. ;
Mitidieri, E. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 260 (01) :90-111
[4]  
CARISTI G, 2009, DOKL AKAD NAUK+, V424, P741
[5]  
Caristi G., 1997, Adv. Differ. Equ., V2, P319
[6]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[7]   Nonlinear Liouville theorems for Grushin and Tricomi operators [J].
D'Ambrosio, L ;
Lucente, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :511-541
[8]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[9]   Liouville theorems for anisotropic quasilinear inequalities [J].
D'Ambrosio, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2855-2869
[10]   Gradient bounds for anisotropic partial differential equations [J].
Farina, Alberto ;
Valdinoci, Enrico .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) :923-936