Mapping fetal brain development based on automated segmentation and 4D brain atlasing

被引:29
作者
Li, Haotian [1 ]
Yan, Guohui [2 ]
Luo, Wanrong [1 ]
Liu, Tingting [1 ]
Wang, Yan [1 ]
Liu, Ruibin [1 ]
Zheng, Weihao [1 ]
Zhang, Yi [1 ,3 ]
Li, Kui [2 ]
Zhao, Li [4 ]
Limperopoulos, Catherine [4 ]
Zou, Yu [2 ]
Wu, Dan [1 ]
机构
[1] Zhejiang Univ, Dept Biomed Engn, Coll Biomed Engn & Instrument Sci, Key Lab Biomed Engn,Minist Educ, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Med, Womens Hosp, Dept Radiol, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp 1, Dept Neurol, Hangzhou, Peoples R China
[4] Childrens Natl Med Ctr, Ctr Developing Brain Diagnost Imaging & Radiol, Washington, DC 20010 USA
基金
中国国家自然科学基金;
关键词
U-net convolutional network; Fetal brain extraction; Chinese fetal brain atlas; Morphological development; Super-resolution reconstruction; NORMAL GESTATIONAL LANDMARKS; VOLUME RECONSTRUCTION; SPATIOTEMPORAL ATLAS; STANDARD BRAIN; MRI; REGISTRATION; LOCALIZATION; CONSTRUCTION; ALGORITHMS; EXTRACTION;
D O I
10.1007/s00429-021-02303-x
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Fetal brain MRI has become an important tool for in utero assessment of brain development and disorders. However, quantitative analysis of fetal brain MRI remains difficult, partially due to the limited tools for automated preprocessing and the lack of normative brain templates. In this paper, we proposed an automated pipeline for fetal brain extraction, super-resolution reconstruction, and fetal brain atlasing to quantitatively map in utero fetal brain development during mid-to-late gestation in a Chinese population. First, we designed a U-net convolutional neural network for automated fetal brain extraction, which achieved an average accuracy of 97%. We then generated a developing fetal brain atlas, using an iterative linear and nonlinear registration approach. Based on the 4D spatiotemporal atlas, we quantified the morphological development of the fetal brain between 23 and 36 weeks of gestation. The proposed pipeline enabled the fully automated volumetric reconstruction for clinically available fetal brain MRI data, and the 4D fetal brain atlas provided normative templates for the quantitative characterization of fetal brain development, especially in the Chinese population.
引用
收藏
页码:1961 / 1972
页数:12
相关论文
共 62 条
[41]   Population differences in brain morphology: Need for population specific brain template [J].
Rao, Naren P. ;
Jeelani, Haris ;
Achalia, Rashmin ;
Achalia, Garima ;
Jacob, Arpitha ;
Bharath, Rose Dawn ;
Varambally, Shivarama ;
Venkatasubramanian, Ganesan ;
Yalavarthy, Phaneendra K. .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2017, 265 :1-8
[42]  
Rolo LC, 2011, ARCH GYNECOL OBSTET, V283, P149, DOI [10.1007/s00404-010-1691-y, 10.1007/s00404-010-1521-2]
[43]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[44]  
Rousseau F, 2010, LECT NOTES COMPUT SC, V6362, P355
[45]   Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images [J].
Rousseau, Francois ;
Glenn, Orit A. ;
Iordanova, Bistra ;
Rodriguez-Carranza, Claudia ;
Vigneron, Daniel B. ;
Barkovich, James A. ;
Studholme, Colin .
ACADEMIC RADIOLOGY, 2006, 13 (09) :1072-1081
[46]   BTK: An open-source toolkit for fetal brain MR image processing [J].
Rousseau, Francois ;
Oubel, Estanislao ;
Pontabry, Julien ;
Schweitzer, Marc ;
Studholme, Colin ;
Koob, Meriam ;
Dietemann, Jean-Louis .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 109 (01) :65-73
[47]   Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging [J].
Salehi, Seyed Sadegh Mohseni ;
Erdogmus, Deniz ;
Gholipour, Ali .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) :2319-2330
[48]  
Schuh A, 2018, BIORXIV, DOI 10.1101/251512
[49]   Construction of a 4D Brain Atlas and Growth Model Using Diffeomorphic Registration [J].
Schuh, Andreas ;
Murgasova, Maria ;
Makropoulos, Antonios ;
Ledig, Christian ;
Counsell, Serena J. ;
Hajnal, Jo V. ;
Aljabar, Paul ;
Rueckert, Daniel .
SPATIO-TEMPORAL IMAGE ANALYSIS FOR LONGITUDINAL AND TIME-SERIES IMAGE DATA, 2015, 8682 :27-37
[50]   Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI [J].
Scott, Julia A. ;
Habas, Riutr A. ;
Kim, Kio ;
Rajagopalan, Vidya ;
Hamzelou, Kia S. ;
Corbett-Detig, James M. ;
Barkovich, A. James ;
Glenn, Orit A. ;
Studholme, Colin .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2011, 29 (05) :529-536