Mn-Zn ferrite nanoparticles for application in magnetic hyperthermia

被引:12
作者
Kim, Hyung Joon [1 ]
Hyun, Sung Wook [2 ]
Kim, So Hee [3 ]
Choi, Hyunkyung [2 ]
机构
[1] Basic Mat & Chem R&D Ctr, LG Chem Res Pk, Daejeon 34122, South Korea
[2] Kookmin Univ, Dept Phys, Seoul 02707, South Korea
[3] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 02792, South Korea
关键词
Ferrite; Hyperthermia; Magnetic nanoparticles; Mossbauer spectroscopy; MOSSBAUER;
D O I
10.1007/s10967-021-07830-9
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mn-Zn ferrite nanoparticles for magnetic hyperthermia applications were synthesized by a high temperature thermal decomposition method. The crystallographic, magnetic, and thermal properties of the prepared Mn-Zn nanoparticles were investigated using a vibrating-sample magnetometer, X-ray photoelectron spectroscopy, Raman, Mossbauer spectroscopy, and magnetic hyperthermia system. Among Mn-Zn ferrites, the saturation magnetization of Mn0.2Zn0.8Fe2O4 reached maximum value (83.2 emu/g). The heating temperature of Mn0.2Zn0.8Fe2O4 was 118.5 and 48.1 degrees C for powder and agar solution at 50 kHz and 250 Oe. These results suggest that the synthesized nanoparticles can be potential candidates for their use in magnetic hyperthermia areas.
引用
收藏
页码:445 / 454
页数:10
相关论文
共 37 条
[1]   Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field [J].
Babic, Michal ;
Horak, Daniel ;
Molcan, Matus ;
Timko, Milan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (34)
[2]   Magnetic nanoparticle-based hyperthermia for cancer treatment [J].
Banobre-Lopez, Manuel ;
Teijeiro, Antonio ;
Rivas, Jose .
REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY, 2013, 18 (06) :397-400
[3]   The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications [J].
Boyer, Cyrille ;
Whittaker, Michael R. ;
Bulmus, Volga ;
Liu, Jingquan ;
Davis, Thomas P. .
NPG ASIA MATERIALS, 2010, 2 (01) :23-30
[4]   Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point [J].
Chandunika, R. K. ;
Vijayaraghavan, R. ;
Sahu, Niroj Kumar .
MATERIALS RESEARCH EXPRESS, 2020, 7 (06)
[5]   Biologically Targeted Magnetic Hyperthermia: Potential and Limitations [J].
Chang, David ;
Lim, May ;
Goos, Jeroen A. C. M. ;
Qiao, Ruirui ;
Ng, Yun Yee ;
Mansfeld, Friederike M. ;
Jackson, Michael ;
Davis, Thomas P. ;
Kavallaris, Maria .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[6]   Study of Hyperthermia Through the Bioplasma Treatment and Magnetic Properties of Fe3O4 Nanoparticles [J].
Choi, Hyunkyung ;
Kim, Sam Jin ;
Choi, Eun Ha ;
Kim, Chul Sung .
IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11) :1V
[7]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[8]   Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances [J].
Etemadi, Hossein ;
Plieger, Paul G. .
ADVANCED THERAPEUTICS, 2020, 3 (11)
[9]   High Photocatalytic Activity of Magnetically Separable Manganese Ferrite-Graphene Heteroarchitectures [J].
Fu, Yongsheng ;
Xiong, Pan ;
Chen, Haiqun ;
Sun, Xiaoqiang ;
Wang, Xin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (02) :725-731
[10]   Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination [J].
Garanina, Anastasiia S. ;
Naumenko, Victor A. ;
Nikitin, Aleksey A. ;
Myrovali, Eirini ;
Petukhova, Anna Y. ;
Klimyuk, Svetlana V. ;
Nalench, Yulia A. ;
Ilyasov, Artem R. ;
Vodopyanov, Stepan S. ;
Erofeev, Alexander S. ;
Gorelkin, Peter V. ;
Angelakeris, Makis ;
Savchenko, Alexander G. ;
Wiedwald, Ulf ;
Majouga, Alexander G. ;
Abakumov, Maxim A. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 25