Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana

被引:270
|
作者
Negi, Sangeeta [1 ]
Ivanchenko, Maria G. [2 ]
Muday, Gloria K. [1 ]
机构
[1] Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA
[2] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
来源
PLANT JOURNAL | 2008年 / 55卷 / 02期
关键词
auxin; ethylene; lateral roots; auxin transport; AUX1;
D O I
10.1111/j.1365-313X.2008.03495.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5, enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation.
引用
收藏
页码:175 / 187
页数:13
相关论文
共 50 条
  • [1] GIGANTEA regulates lateral root formation by modulating auxin signaling in Arabidopsis thaliana
    Singh, Anamika
    PLANT SIGNALING & BEHAVIOR, 2022, 17 (01)
  • [2] Roles of brassinosteroid, ethylene and auxin on root hair formation of Arabidopsis thaliana
    Tanaka, M
    Arai, T
    Nara, Y
    Inoue, Y
    PLANT AND CELL PHYSIOLOGY, 2005, 46 : S216 - S216
  • [3] Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana
    Ivanchenko, Maria G.
    Muday, Gloria K.
    Dubrovsky, Joseph G.
    PLANT JOURNAL, 2008, 55 (02): : 335 - 347
  • [4] Abscisic Acid Regulates Root Elongation Through the Activities of Auxin and Ethylene in Arabidopsis thaliana
    Thole, Julie M.
    Beisner, Erin R.
    Liu, James
    Venkova, Savina V.
    Strader, Lucia C.
    G3-GENES GENOMES GENETICS, 2014, 4 (07): : 1259 - 1274
  • [5] LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana
    Feng, Zhenhua
    Sun, Xudong
    Wang, Guangchao
    Liu, Hailiang
    Zhu, Jian
    ANNALS OF BOTANY, 2012, 110 (01) : 1 - 10
  • [6] Auxin and ethylene effect in hook formation in Arabidopsis thaliana
    Olmos, E
    Molina, JR
    Gaubert, J
    Hellin, E
    Latché, A
    Pech, JC
    Bouzayen, M
    BIOLOGY AND BIOTECHNOLOGY OF THE PLANT HORMONE ETHYLENE III, 2003, 349 : 74 - 75
  • [7] Lateral root formation in Arabidopsis thaliana.
    Malamy, JE
    Benfey, PN
    PLANT PHYSIOLOGY, 1997, 114 (03) : 277 - 277
  • [8] Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana
    Zhenhua Feng
    Jian Zhu
    Xiling Du
    Xianghuan Cui
    Planta, 2012, 236 : 1227 - 1237
  • [9] Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana
    Feng, Zhenhua
    Zhu, Jian
    Du, Xiling
    Cui, Xianghuan
    PLANTA, 2012, 236 (04) : 1227 - 1237
  • [10] Auxin transport promotes Arabidopsis lateral root initiation
    Casimiro, I
    Marchant, A
    Bhalerao, RP
    Beeckman, T
    Dhooge, S
    Swarup, R
    Graham, N
    Inzé, D
    Sandberg, G
    Casero, PJ
    Bennett, M
    PLANT CELL, 2001, 13 (04): : 843 - 852