HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED MODEL FITTING

被引:58
|
作者
Zic, T. [1 ]
Vrsnak, B. [1 ]
Temmer, M. [2 ]
机构
[1] Univ Zagreb, Hvar Observ, Fac Geodesy, HR-10000 Zagreb, Croatia
[2] Graz Univ, Inst Phys, IGAM, Kanzelhohe Observ, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
methods: analytical; methods: numerical; solar-terrestrial relations; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); AERODYNAMIC DRAG; KINEMATICS; FORCES; RECONSTRUCTION; EVOLUTION; REMOTE; CMES;
D O I
10.1088/0067-0049/218/2/32
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The so-called drag-based model (DBM) simulates analytically the propagation of coronal mass ejections (CMEs) in interplanetary space and allows the prediction of their arrival times and impact speeds at any point in the heliosphere ("target"). The DBM is based on the assumption that beyond a distance of about 20 solar radii from the Sun, the dominant force acting on CMEs is the "aerodynamic" drag force. In the standard form of DBM, the user provisionally chooses values for the model input parameters, by which the kinematics of the CME over the entire Sun-"target" distance range is defined. The choice of model input parameters is usually based on several previously undertaken statistical studies. In other words, the model is used by ad hoc implementation of statistics-based values of the input parameters, which are not necessarily appropriate for the CME under study. Furthermore, such a procedure lacks quantitative information on how well the simulation reproduces the coronagraphically observed kinematics of the CME, and thus does not provide an estimate of the reliability of the arrival prediction. In this paper we advance the DBM by adopting it in a form that employs the CME observations over a given distance range to evaluate the most suitable model input parameters for a given CME by means of least-squares fitting. Furthermore, the new version of the model automatically responds to any significant change of the conditions in the ambient medium (solar wind speed, density, CME-CME interactions, etc.) by changing the model input parameters according to changes in the CME kinematics. The advanced DBM is shaped in a form that can be readily employed in an operational system for real-time space-weather forecasting by promptly adjusting to a successively expanding observational data set, thus providing a successively improving prediction of the CME arrival.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Coronal mass ejections in July 2005 and an unusual heliospheric event
    M. A. Livshits
    A. V. Belov
    A. I. Shakhovskaya
    E. A. Eroshenko
    A. R. Osokin
    L. K. Kashapova
    Cosmic Research, 2013, 51 : 326 - 334
  • [22] A model for stealth coronal mass ejections
    Lynch, B. J.
    Masson, S.
    Li, Y.
    DeVore, C. R.
    Luhmann, J. G.
    Antiochos, S. K.
    Fisher, G. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (11) : 10677 - 10697
  • [23] On the Aerodynamic Drag Force Acting on Interplanetary Coronal Mass Ejections
    Peter J. Cargill
    Solar Physics, 2004, 221 : 135 - 149
  • [24] A probabilistic approach to the drag-based model
    Napoletano, Gianluca
    Forte, Roberta
    Del Moro, Dario
    Pietropaolo, Ermanno
    Giovannelli, Luca
    Berrilli, Francesco
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2018, 8
  • [25] On the autonomous detection of coronal mass ejections in heliospheric imager data
    Tappin, S. J.
    Howard, T. A.
    Hampson, M. M.
    Thompson, R. N.
    Burns, C. E.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [26] ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS
    Liu, Ying D.
    Luhmann, Janet G.
    Lugaz, Noe
    Moestl, Christian
    Davies, Jackie A.
    Bale, Stuart D.
    Lin, Robert P.
    ASTROPHYSICAL JOURNAL, 2013, 769 (01)
  • [27] Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
    S. Schreiner
    C. Cattell
    K. Kersten
    A. Hupach
    Solar Physics, 2013, 288 : 291 - 309
  • [28] Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
    Schreiner, S.
    Cattell, C.
    Kersten, K.
    Hupach, A.
    SOLAR PHYSICS, 2013, 288 (01) : 291 - 309
  • [29] The role of aerodynamic drag in dynamics of coronal mass ejections
    Vrsnak, Bojan
    Vrbanec, Dijana
    Calogovic, Jasa
    Zic, Tomislav
    UNIVERSAL HELIOPHYSICAL PROCESSES, 2009, (257): : 271 - 277
  • [30] Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections
    Nada Al-Haddad
    Teresa Nieves-Chinchilla
    Neel P. Savani
    Noé Lugaz
    Ilia I. Roussev
    Solar Physics, 2018, 293