Multilinear Marcinkiewicz-Zygmund Inequalities

被引:5
作者
Carando, Daniel [1 ,2 ]
Mazzitelli, Martin [3 ,4 ]
Ombrosi, Sheldy [5 ,6 ]
机构
[1] Univ Buenos Aires, Dept Matemat Pab 1, Fac Cs Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
[3] Univ Nacl Cuyo, Inst Balseiro, CNEA, Buenos Aires, DF, Argentina
[4] Univ Nacl Comahue, Ctr Reg Univ Bariloche, Dept Matemat, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Nacl Sur, Dept Matemat, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn, INMABB, Bahia Blanca, Buenos Aires, Argentina
关键词
Vector-valued inequalities; Multilinear operators; Calderon-Zygmund operators; WEIGHTED NORM INEQUALITIES; VECTOR-VALUED INEQUALITIES; EXTRAPOLATION; SPACES;
D O I
10.1007/s00041-017-9563-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on r -valued extensions of linear operators. We show that for certain 1 = p, q1,..., qm, r = 8, there is a constant C = 0 such that for every bounded multilinear operator T : Lq1(mu 1) x center dot center dot center dot xLqm (mu m). L p(.) and functions {f 1 k1} n1 k1= 1. Lq1(mu 1),..., {f m km} nm km= 1. Lqm (mu m), the following inequality holds parallel to k1km | T ( f 1 k1,, f m km)| r.. 1/ r L p(.) = C T m i= 1 ni ki= 1 | f i ki | r.. 1/ r Lqi (mu i). (1) In some cases we also calculate the best constant C = 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderon-Zygmund operators.
引用
收藏
页码:51 / 85
页数:35
相关论文
共 27 条
  • [1] [Anonymous], 1985, Weighted Norm Inequalities and Related Topics
  • [2] Benea C., ARXIV160901090
  • [3] MULTIPLE VECTOR-VALUED INEQUALITIES VIA THE HELICOIDAL METHOD
    Benea, Cristina
    Muscalu, Camil
    [J]. ANALYSIS & PDE, 2016, 9 (08): : 1931 - 1988
  • [4] Bergh J, 1976, GRUND LEHREN MATH WI, V223
  • [5] Boas HP., 2000, J. Korean. Math. Soc, V37, P321
  • [6] Bohnenblust HF., 1931, Ann. Math., V32, P600, DOI [DOI 10.2307/1968255, 10.2307/1968255]
  • [7] Multilinear extensions of Grothendieck's theorem
    Bombal, F
    Pérez-García, D
    Villanueva, I
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 : 441 - 450
  • [8] Extrapolation from A∞ weights and applications
    Cruz-Uribe, D
    Martell, JM
    Pérez, C
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) : 412 - 439
  • [9] Culiuc A., ARXIV160305317
  • [10] Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals
    Curbera, Guillermo P.
    Garcia-Cuerva, Jose
    Martell, Jose Maria
    Perez, Carlos
    [J]. ADVANCES IN MATHEMATICS, 2006, 203 (01) : 256 - 318