The inverse scattering problem for a discrete Sturm-Liouville equation on the line

被引:3
作者
Khanmamedov, A. Kh. [1 ,2 ]
机构
[1] Baku State Univ, Baku, Azerbaijan
[2] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
the inverse spectral problem; Jacobi operators; scattering problem; Weyl function;
D O I
10.1070/SM2011v202n07ABEH004178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the inverse scattering problem for a discrete Sturm-Liouville equation on the entire line with coefficients that stabilize to zero in one direction. We derive a necessary and a sufficient condition on the scattering data so that the inverse problem is uniquely solvable.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 23 条
[1]  
Akhiezer N.I., 1961, The Classical Moment Problem and Some Related Questions in Analysis
[2]  
APTEKAREV AI, 1984, MATH USSR SB, V49, P325
[3]  
Berezanskii Y., 1968, Translations of Mathematical Monographs, V17
[4]   INVERSE SCATTERING THEORY FOR ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH STEPLIKE FINITE-GAP POTENTIALS [J].
de Monvel, Anne Boutet ;
Egorova, Iryna ;
Teschl, Gerald .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1) :271-316
[5]  
EGOROVA I, 2002, MATEM FIZ ANAL GEOM, V9, P188
[6]   Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds [J].
Egorova, Iryna ;
Michor, Johanna ;
Teschl, Gerald .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[7]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[8]  
GUSEINOV GS, 1976, THESIS MOSCOW STATE
[9]   The t→∞ asymptotic regime of the Cauchy problem solution for the Toda chain with threshold-type initial data [J].
Guseinov, IM ;
Khanmamedov, AK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 119 (03) :739-749
[10]  
IANTCHENKO A, ARXIV10061538