Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response

被引:13
|
作者
Jiang, Xin [1 ]
She, Zhikun [1 ]
Feng, Zhaosheng [2 ]
Zheng, Xiuliang [1 ,3 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Xueyuan Rd 37, Beijing 100191, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[3] Hebei North Univ, Coll Sci, Zuanshinan Rd 37, Zhangjiakou 075000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Predator-prey system; saddle-node bifurcation; Hopf bifurcation; local and global asymptotic stability; S-procedure; SEMIDEFINITE PROGRAMMING RELAXATIONS; PERIODIC-SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1142/S0218127417502224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the structural stability of a density dependent predatorprey system with ratio-dependent functional response. Starting with the geometrical analysis of hyperbolic curves, we obtain that the system has one or two positive equilibria under various conditions. Inspired by the S-procedure and semi-definite programming, we use the sum of squares decomposition based method to ensure the global asymptotic stability of the positive equilibrium through the associated polynomial Lyapunov functions. By exploring the monotonic property of the trace of the Jacobianmatrix with respect to r under the given different conditions, we analytically verify that there is a corresponding unique r* such that the trace is equal to zero and prove the existence of Hopf bifurcation, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Ratio-dependent predator-prey system with stage structure for prey
    Song, XY
    Cai, LM
    Neumann, AU
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (03): : 747 - 758
  • [42] RATIO-DEPENDENT PREDATOR-PREY THEORY
    MATSON, P
    BERRYMAN, A
    ECOLOGY, 1992, 73 (05) : 1528 - 1528
  • [43] On a Generalized Discrete Ratio-Dependent Predator-Prey System
    Fan, Yong-Hong
    Wang, Lin-Lin
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [44] Spatiotemporal complexity of a ratio-dependent predator-prey system
    Wang, Weiming
    Liu, Quan-Xing
    Jin, Zhen
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [45] Qualitative behaviour of a ratio-dependent predator-prey system
    Kovacs, Sandor
    Kiss, Krisztina
    Farkas, Miklos
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1627 - 1642
  • [46] Bionomic exploitation of a ratio-dependent predator-prey system
    Maiti, Alakes
    Patra, Bibek
    Samanta, G. P.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (08) : 1061 - 1076
  • [47] Note on a ratio-dependent predator-prey system with diffusion
    Peng, R
    Wang, MX
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (01) : 1 - 11
  • [48] Global dynamics of a ratio-dependent predator-prey system
    Dongmei Xiao
    Shigui Ruan
    Journal of Mathematical Biology, 2001, 43 : 268 - 290
  • [49] Global dynamics of a ratio-dependent predator-prey system
    Xiao, DM
    Ruan, SG
    JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (03) : 268 - 290
  • [50] An impulsive ratio-dependent predator-prey system with diffusion
    Akhmet, M. U.
    Beklioglu, M.
    Ergenc, T.
    Tkachenko, V. I.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 1255 - 1267