On the Aleksandrov-Bakel'man-Pucci Estimate for Some Elliptic and Parabolic Nonlinear Operators

被引:13
作者
Argiolas, Roberto [1 ]
Charro, Fernando [1 ]
Peral, Ireneo [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] ICMAT, Madrid 28049, Spain
关键词
VISCOSITY SOLUTIONS; DIRICHLET PROBLEM; MAXIMUM PRINCIPLE; EQUATIONS; INEQUALITY; UNIQUENESS;
D O I
10.1007/s00205-011-0434-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the Aleksandrov-Bakel'man-Pucci estimate for (possibly degenerate) nonlinear elliptic and parabolic equations of the form -div (F (del u(x))) = f(x) in Omega subset of R-n and u(t) (x, t) - div ((F (del u(x, t))) = f (x, t) in Q subset of Rn+1 for F a C-1 monotone field under some suitable conditions. Examples of applications such as the p-Laplacian and the Mean Curvature Flow are considered, as well as extensions of the general results to equations that are not in divergence form, such as the m-curvature flow.
引用
收藏
页码:875 / 917
页数:43
相关论文
共 46 条
[1]  
Aleksandrov A.D., 1968, Vestnik Lenningrad Univ., V21, P120
[2]  
[Anonymous], ARCH MATH
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]  
[Anonymous], RUSS MATH SURV
[5]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[6]  
[Anonymous], 2007, DIRICHLET PROBLEM SI
[7]  
[Anonymous], 1995, AM MATH SOC COLLOQ P
[8]  
Bakel'man I., 1961, Siberian Math. J, V2, P179
[10]  
Caffarelli L, 1996, COMMUN PUR APPL MATH, V49, P365