共 50 条
Effect of Surface Coverage of Water Molecules on Methane Adsorption on Muscovite and Pyrophyllite: Molecular Dynamics Study
被引:6
|作者:
Shiga, Masashige
[4
]
Morishita, Tetsuya
[1
,2
]
Aichi, Masaatsu
[3
]
Sorai, Masao
[4
]
机构:
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Tsukuba, Ibaraki 3058568, Japan
[2] Tohoku Univ, Math Adv Mat Open Innovat Lab MathAM OIL, Natl Inst Adv Ind Sci & Technol AIST, AIMR, Sendai, Miyagi 9808577, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Environm Syst, Kashiwa, Chiba 2778563, Japan
[4] Natl Inst Adv Ind Sci & Technol, Geol Survey Japan, Tsukuba, Ibaraki 3058567, Japan
关键词:
HIGH-PRESSURE METHANE;
CARBON-DIOXIDE ADSORPTION;
GAS-STORAGE;
MONTE-CARLO;
ISOTHERMAL ADSORPTION;
ABSOLUTE ADSORPTION;
INTERFACIAL WATER;
LONGMAXI SHALE;
POROUS CARBONS;
CLAY-MINERALS;
D O I:
10.1021/acs.energyfuels.1c02697
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
To gain a better understanding of the effect of surface coverage of water (H2O) on methane (CH4) adsorption on shale, we performed molecular dynamics simulations. The interactions of H2O with minerals play a key role in the surface coverage of H2O; hence, two representative minerals were investigated: muscovite, which has a high layer charge, and pyrophyllite, which has a net zero layer charge. On the muscovite surface, the amount of CH4 adsorption decreases due to the formation of a structured adsorption layer of H2O, which increases the free energy barrier of CH4 adsorption. On the pyrophyllite surface, the amount of CH4 adsorption decreases due to the spread of a H2O droplet on the surface, which reduces accessible adsorption sites for the CH4 molecules. These insights from an atomic-scale viewpoint are expected to improve our interpretation of the results from the core analysis and modeling of the adsorption amount on shale reservoirs.
引用
收藏
页码:19986 / 19999
页数:14
相关论文