Iterative method for fuzzy equations

被引:23
作者
Allahviranloo, T. [1 ]
Otadi, M. [1 ]
Mosleh, M. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Firuozkooh, Iran
关键词
nonlinear equations; fuzzy numbers; Fixed point method;
D O I
10.1007/s00500-007-0263-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose numerical solution for solving a system of fuzzy nonlinear equations based on Fixed point method. The convergence theorem is proved in detail. In this method the algorithm is illustrated by solving several numerical examples.
引用
收藏
页码:935 / 939
页数:5
相关论文
共 17 条
[1]   Iterated He's homotopy perturbation method for quadratic Riccati differential equation [J].
Abbasbandy, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :581-589
[2]   Newton's method for solving a system of fuzzy nonlinear equations [J].
Abbasbandy, S. ;
Ezzati, R. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1189-1199
[3]   Newton's method for solving fuzzy nonlinear equations [J].
Abbasbandy, S ;
Asady, B .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :349-356
[4]  
ABBASBANDY S, 2006, ADV THEOR APPL MATH, V1, P1
[5]   SOLVING LINEAR AND QUADRATIC FUZZY EQUATIONS [J].
BUCKLEY, JJ ;
QU, Y .
FUZZY SETS AND SYSTEMS, 1990, 38 (01) :43-59
[6]  
Chang JC, 2004, COMPUT MATH APPL, V47, P845, DOI [10.1016/S0898-1221(04)90068-5, 10.1016/j.camwa.2003.09.024]
[7]   FUZZY MAPPING AND CONTROL [J].
CHANG, SSL ;
ZADEH, LA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (01) :30-&
[8]   Nonlinear equations for fuzzy mappings in probabilistic normed spaces [J].
Cho, YJ ;
Huang, NJ ;
Kang, SM .
FUZZY SETS AND SYSTEMS, 2000, 110 (01) :115-122
[9]   OPERATIONS ON FUZZY NUMBERS [J].
DUBOIS, D ;
PRADE, H .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1978, 9 (06) :613-626
[10]  
DUBOIS D, 1980, FUZZY SETS SYSTMS TH