Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

被引:377
作者
Lindsay, L. [1 ]
Broido, D. A. [2 ]
机构
[1] USN, Res Lab, Washington, DC USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
GRAPHENE; CRYSTALS;
D O I
10.1103/PhysRevB.84.155421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivity, kappa, of single layers of hexagonal boron nitride (h-BN), as well as that of bulk h-BN have been calculated utilizing an exact numerical solution of the phonon Boltzmann transport equation. The stronger phonon-phonon scattering in h-BN is revealed as the cause for its lower kappa compared with graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in kappa, with calculated room temperature values of more than 600 Wm(-1) K-1. Isotopic enrichment further increases kappa, with the calculated enhancement exhibiting a peak with temperature, whose magnitude shows a dramatic sensitivity to crystallite size.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] Thermal conductivity of germanium crystals with different isotopic compositions
    AsenPalmer, M
    Bartkowski, K
    Gmelin, E
    Cardona, M
    Zhernov, AP
    Inyushkin, AV
    Taldenkov, A
    Ozhogin, VI
    Itoh, KM
    Haller, EE
    [J]. PHYSICAL REVIEW B, 1997, 56 (15) : 9431 - 9447
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [4] Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
    Cai, Weiwei
    Moore, Arden L.
    Zhu, Yanwu
    Li, Xuesong
    Chen, Shanshan
    Shi, Li
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2010, 10 (05) : 1645 - 1651
  • [5] Isotope effect on the thermal conductivity of boron nitride nanotubes
    Chang, C. W.
    Fennimore, A. M.
    Afanasiev, A.
    Okawa, D.
    Ikuno, T.
    Garcia, H.
    Li, Deyu
    Majumdar, A.
    Zettl, A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (08)
  • [6] Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments
    Chen, Shanshan
    Moore, Arden L.
    Cai, Weiwei
    Suk, Ji Won
    An, Jinho
    Mishra, Columbia
    Amos, Charles
    Magnuson, Carl W.
    Kang, Junyong
    Shi, Li
    Ruoff, Rodney S.
    [J]. ACS NANO, 2011, 5 (01) : 321 - 328
  • [7] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [8] THERMAL RESISTIVITY OF DIELECTRIC CRYSTALS DUE TO 4-PHONON PROCESSES AND OPTICAL MODES
    ECSEDY, DJ
    KLEMENS, PG
    [J]. PHYSICAL REVIEW B, 1977, 15 (12): : 5957 - 5962
  • [9] Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
    Ghosh, S.
    Calizo, I.
    Teweldebrhan, D.
    Pokatilov, E. P.
    Nika, D. L.
    Balandin, A. A.
    Bao, W.
    Miao, F.
    Lau, C. N.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [10] Structure of chemically derived mono- and few-atomic-layer boron nitride sheets
    Han, Wei-Qiang
    Wu, Lijun
    Zhu, Yimei
    Watanabe, Kenji
    Taniguchi, Takashi
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (22)