Harmonic measure on fractal sets

被引:18
作者
Beliaev, D
Smirnov, S
机构
来源
European Congress of Mathematics | 2005年
关键词
D O I
10.4171/009-1/3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many problems in complex analysis can be reduced to the evaluation of the universal spectrum: the supremum of multifractal spectra of harmonic measures for all planar domains. Its exact value is still unknown, with very few estimates available. We start with a brief survey of related problems and available estimates from above. Then we discuss in more detail estimates from below, describing the search for a fractal domain which attains the maximal possible spectrum.
引用
收藏
页码:41 / 59
页数:19
相关论文
共 53 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1999, ST PETERSBOURG MATH
[3]  
BAKER IN, 1996, COMPLEX VAR THEORY A, V29, P141, DOI DOI 10.1080/17476939608814883
[4]  
BELIAEV D, UNPUB CORNFORMAL SNO
[5]  
BELIAEV D, 2005, HARMONIC MEASURE RAN
[6]  
BELIAEV D, IN PRESS B LONDON MA
[7]  
BELIAEV D, UNPUB SPECTRUM SLE
[8]  
BERTILSSON D, 1999, BRENNANS CONJECTURE
[9]  
BIEBERBACH L, 1914, PALERNO REND, V38, P98
[10]  
BIEBERBACH L, 1916, BERL SITZUNGSBER, P940