Two kinds of Conjugate Gradient Methods for Solving NonLinear Complementarity Problems

被引:0
作者
Chu, Ajie [1 ]
Du, Shouqiang [1 ]
Su, Yixiao [1 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
来源
2015 CHINESE AUTOMATION CONGRESS (CAC) | 2015年
关键词
nonlinear complementarity problems; Armijo-type line search; conjugate gradient method; SMOOTHING NEWTON METHOD; CONVERGENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we use the Fischer-Burmeister function to reformulate the nonlinear complementarity problems as a system of nonsmooth equation. By analysing the properties of merit function, we propose two kinds of conjugate gradient methods for solving the nonlinear complementarity problems under two Armijo-type line searches. The methods can guarantee the sufficient descent property and the global convergence. Finally, some numerical tests are also given.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 20 条
  • [1] Chen W, 2001, ENG MECH, P33
  • [2] Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities
    Chen, X
    Qi, L
    Sun, D
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 519 - 540
  • [3] An efficient hybrid conjugate gradient method for unconstrained optimization
    Dai, YH
    Yuan, Y
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 33 - 47
  • [4] Dai Yuhong, 2002, [Acta Mathematicae Applicatae Sinica, Ying yung shu hseh hseh pao], V18, P123
  • [5] Daniel R., 1998, GLOBAL LOCAL SUPERLI, P181
  • [6] A semismooth equation approach to the solution of nonlinear complementarity problems
    DeLuca, T
    Facchinei, F
    Kanzow, C
    [J]. MATHEMATICAL PROGRAMMING, 1996, 75 (03) : 407 - 439
  • [7] GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION
    Gilbert, Jean Charles
    Nocedal, Jorge
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) : 21 - 42
  • [8] Han J., 2006, NONLINEAR COMPLEMENT
  • [9] The non-interior continuation methods for solving the P0 function nonlinear complementarity problem
    Huang, ZH
    Han, J
    Xu, DC
    Zhang, LP
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (09): : 1107 - 1114
  • [10] [简金宝 Jian Jinbao], 2007, [高等学校计算数学学报, Numerical Mathematics A Journal of Chinese University], V29, P15