Reduced-gradient analysis of van der Waals complexes

被引:12
作者
Jenkins, T. [1 ,2 ]
Berland, K. [3 ]
Thonhauser, T. [1 ,2 ]
机构
[1] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA
[2] Wake Forest Univ, Ctr Funct Mat, Winston Salem, NC 27109 USA
[3] Norwegian Univ Life Sci, Fac Sci & Technol, As, Norway
来源
ELECTRONIC STRUCTURE | 2021年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
van der Waals interactions; density functional theory; vdW-DF; exchange interaction energy; DENSITY-FUNCTIONAL THEORY; EXCHANGE-ENERGY; APPROXIMATION; ACCURATE;
D O I
10.1088/2516-1075/ac25d7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different methods to describe dispersion interactions within density functional theory have been developed, which is essential to describe binding in van der Waals complexes. However, several key aspects of such complexes-including binding energies, lattice constants, and binding distances-also depend on the exchange description that is paired with the description of dispersion interactions. This is particularly true for the vdW-DF family of van der Waals density functionals, which has a clear division between truly non-local correlations and semi-local generalized-gradient exchange. Here, we present a systematic analysis of the reduced-gradient values that determine the semi-local exchange for different classes of van der Waals complexes. In particular, we analyze molecular dimers, layered structures, surface adsorption, and molecular crystals. We find that reduced-gradient values of less than similar to 1 to similar to 1.5-depending on the system-contribute attractively to the exchange binding, while reduced gradients above those values are repulsive. We find that the attractive contributions can be attributed to low-density regions between the constituents with disk-like iso-surfaces. We further identify a mechanism wherein the surface area of these disks decreases through merging with other iso-surfaces and switches the gradient-correction to exchange from attractive to repulsive. This analysis allows us to explain some of the differences in performance of vdW-DF variants and initiates a discussion of desirable features of the exchange enhancement factor. While our analysis is focused on vdW-DF, it also casts light on van der Waals binding in a broader context and can be used to understand why methods perform differently for different classes of van der Waals systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Materials perspective on Casimir and van der Waals interactions
    Woods, L. M.
    Dalvit, D. A. R.
    Tkatchenko, A.
    Rodriguez-Lopez, P.
    Rodriguez, A. W.
    Podgornik, R.
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
  • [32] Van der Waals interactions in selected allotropes of phosphorus
    Bachhuber, Frederik
    von Appen, Joerg
    Dronskowski, Richard
    Schmidt, Peer
    Nilges, Tom
    Pfitzner, Arno
    Weihrich, Richard
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2015, 230 (02): : 107 - 115
  • [33] Importance of van der Waals Interactions in Liquid Water
    Lin, I-Chun
    Seitsonen, Ari P.
    Coutinho-Neto, Mauricio D.
    Tavernelli, Ivano
    Rothlisberger, Ursula
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (04) : 1127 - 1131
  • [34] van der Waals interaction as a summable asymptotic series
    Perdew, John P.
    Ruzsinszky, Adrienn
    Sun, Jianwei
    Glindmeyer, Stephen
    Csonka, Gabor I.
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [35] Adiabatic perturbation theory for Van der Waals coefficients
    Görling, A
    Heinze, HH
    Levy, M
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 501 : 271 - 276
  • [36] van der Waals Interactions in Ionic and Semiconductor Solids
    Zhang, Guo-Xu
    Tkatchenko, Alexandre
    Paier, Joachim
    Appel, Heiko
    Scheffler, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (24)
  • [37] Nanoscale van der Waals interactions
    Cole, Milton W.
    Velegol, Darrell
    Kim, Hye-Young
    Lucas, Amand A.
    [J]. MOLECULAR SIMULATION, 2009, 35 (10-11) : 849 - 866
  • [38] Geckos, Ceilings and van der Waals
    Housecroft, Catherine E.
    [J]. CHIMIA, 2018, 72 (06) : 428 - 429
  • [39] Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions
    Dappe, Y. J.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (08)
  • [40] Perspectives on van der Waals Density Functionals: The Case of TiS2
    Krogel, Jaron T.
    Yuk, Simuck F.
    Kent, Paul R. C.
    Cooper, Valentino R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (47) : 9867 - 9876