Binary Bell Polynomials Approach to Generalized Nizhnik-Novikov-Veselov Equation

被引:15
作者
Hu Xiao-Rui [1 ]
Chen Yong [1 ,2 ,3 ]
机构
[1] E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[2] Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Zhejiang, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Nizhnik-Novikov-Veselov equation; binary Bell polynomials; conservation laws; COHERENT STRUCTURES; CONSERVATION-LAWS; WAVE SOLUTIONS; SOLITON; TRANSFORM;
D O I
10.1088/0253-6102/56/2/04
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elementary and systematic binary Bell polynomials method is applied to the generalized Nizhnik-Novikov-Veselov (GNNV) equation. The bilinear representation, bilinear Backlund transformation, Lax pair and infinite conservation laws of the GNNV equation are obtained directly, without too much trick like Hirota's bilinear method.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 25 条
  • [1] Exponential polynomials
    Bell, ET
    [J]. ANNALS OF MATHEMATICS, 1934, 35 : 258 - 277
  • [2] ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS
    BOITI, M
    LEON, JJP
    MANNA, M
    PEMPINELLI, F
    [J]. INVERSE PROBLEMS, 1986, 2 (03) : 271 - 279
  • [3] Chen Y, 2004, COMMUN THEOR PHYS, V42, P655
  • [4] Dubrovsky V.G., 1994, J PHYS A, V27, P4619
  • [5] Extended tanh-function method and its applications to nonlinear equations
    Fan, EG
    [J]. PHYSICS LETTERS A, 2000, 277 (4-5) : 212 - 218
  • [6] FAN EG, 2010, ARXIV10084194, P22306
  • [7] On the combinatorics of the Hirota D-operators
    Gilson, C
    Lambert, F
    Nimmo, J
    Willox, R
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1945): : 223 - 234
  • [8] NONLINEAR EVOLUTION EQUATIONS GENERATED FROM BACKLUND TRANSFORMATION FOR BOUSSINESQ EQUATION
    HIROTA, R
    SATSUMA, J
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1977, 57 (03): : 797 - 807
  • [9] Hirota R., 2004, DIRECT METHODS SOLIT
  • [10] Conservation laws of equation family with same Kac-Moody-Virasoro symmetry
    Jia, Man
    Gao, Yuan
    Lou, S. Y.
    [J]. PHYSICS LETTERS A, 2010, 374 (15-16) : 1704 - 1711