Maize, wheat and rice production potential changes in China under the background of climate change

被引:76
作者
Li Fei [1 ,2 ]
Zhou Meijun [1 ]
Shao Jiaqi [1 ]
Chen Zehui [1 ]
Wei Xiaoli [1 ]
Yang Jiuchun [3 ]
机构
[1] Northwest Univ, Coll Urban & Environm Sci, Xian 710127, Peoples R China
[2] Shaanxi Key Lab Earth Surface Syst & Environm Car, Xian 710127, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; Production potential; Periodicity; China; CROP PRODUCTION; CHANGE IMPACTS; WINTER-WHEAT; YIELD GAPS; VARIABILITY; PRECIPITATION; AGRICULTURE; METAANALYSIS; FLUCTUATION; SUMMER;
D O I
10.1016/j.agsy.2020.102853
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
China, as one of the largest food consumers in the world, is currently experiencing obvious impacts of climate change. Exploring the impact of climate change on the production potential of maize, wheat, and rice in China is of great significance in adapting to climate change and safeguarding global food security. In this study the Global Agro-Ecological Zone (GAEZ) model and the Extreme-Point Symmetric Mode Decomposition (ESMD) model were used to explore the trends in production potential of China's three major crops in the context of climate change from 1960 to 2010. There was a quasi-3-year and quasi-5-year cycle in changes in maize, wheat, and rice production potential due to climate change in China. Climate change increased maize and rice production potential and reduced wheat production potential. The increase in minimum temperature was the main reason for the increased maize and rice production potential. Reduced wheat production potential was mainly caused by increased maximum temperature. Decreases in precipitation had a substantial negative impact on the production potential of all three crops. These results suggest that priority should be given to adjusting the structure of agricultural cultivation and appropriately expanding the planting area of maize and rice to adapt to climate change. Accelerating the construction of agricultural infrastructure to reduce the negative impact of declining precipitation and increasing daytime temperature on agriculture is also a high priority in order to safeguard food security.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa [J].
Abraha, MG ;
Savage, MJ .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2006, 115 (1-4) :150-160
[2]  
[Anonymous], GAEZ GLOB AGR ZON GA
[3]  
[Anonymous], 2017, J MAT SCI MAT ELECT
[4]  
[Anonymous], CLIMATE CHANGE 201 A
[5]  
[Anonymous], LAND USE DYNAMICS SU
[6]   Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades [J].
Bai, Huizi ;
Tao, Fulu ;
Xiao, Dengpan ;
Liu, Fengshan ;
Zhang, He .
CLIMATIC CHANGE, 2016, 135 (3-4) :539-553
[7]   Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy [J].
Bocchiola, D. ;
Nana, E. ;
Soncini, A. .
AGRICULTURAL WATER MANAGEMENT, 2013, 116 :50-61
[8]   Influences of northward propagating 25-90-day and quasi-biweekly oscillations on eastern China summer rainfall [J].
Chen, Jiepeng ;
Wen, Zhiping ;
Wu, Renguang ;
Chen, Zesheng ;
Zhao, Ping .
CLIMATE DYNAMICS, 2015, 45 (1-2) :105-124
[9]   An assessment of climate change impacts on maize yields in Hebei Province of China [J].
Chen, Yongfu ;
Han, Xinru ;
Si, Wei ;
Wu, Zhigang ;
Chien, Hsiaoping ;
Okamoto, Katsuo .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 581 :507-517
[10]   Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J].
Ciais, P ;
Reichstein, M ;
Viovy, N ;
Granier, A ;
Ogée, J ;
Allard, V ;
Aubinet, M ;
Buchmann, N ;
Bernhofer, C ;
Carrara, A ;
Chevallier, F ;
De Noblet, N ;
Friend, AD ;
Friedlingstein, P ;
Grünwald, T ;
Heinesch, B ;
Keronen, P ;
Knohl, A ;
Krinner, G ;
Loustau, D ;
Manca, G ;
Matteucci, G ;
Miglietta, F ;
Ourcival, JM ;
Papale, D ;
Pilegaard, K ;
Rambal, S ;
Seufert, G ;
Soussana, JF ;
Sanz, MJ ;
Schulze, ED ;
Vesala, T ;
Valentini, R .
NATURE, 2005, 437 (7058) :529-533