The quantum Hall effect in narrow quantum wires

被引:2
|
作者
Struck, A. [2 ]
Kawarabayashi, T. [3 ]
Zhuravlev, A. [4 ]
Ohtsuki, T. [5 ]
Kramer, B. [6 ]
Kettemann, S. [1 ]
机构
[1] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany
[2] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[3] Toho Univ, Dept Phys, Chiba 2748510, Japan
[4] Inst Met Phys, Ekaterinburg 620219, Russia
[5] Sophia Univ, Dept Phys, Chiyoda ku, Tokyo 1028554, Japan
[6] Jacobs Univ Bremen, D-28757 Bremen, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2008年 / 245卷 / 02期
关键词
D O I
10.1002/pssb.200743320
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The quantum phase diagram of disordered quantum wires in a strong magnetic field is reviewed. For uncorrelated disorder potential the 2-terminal conductance, as calculated with the numerical transfer matrix method, shows zero temperature discontinuous transitions between exactly integer plateau values and zero. This is explained by the dimensional crossover of the bulk localisation length, which drives a transition from delocalised to localised edge states. In the thermodynamic limit, fixing the aspect ratio of the wire, there is a transition from the one dimensional chiral metal of extended edge states to localisation along the wire. In the vicinity of this chiral metal insulator transition (CMIT), states are identified which are superpositions of edge states with opposite chirality. The bulk contribution of such states is found to decrease with increasing wire width. Based on exact diagonalisation results for the eigenstates and their participation ratios, we conclude that these states are characteristic for the CMIT, and have the appearance of nonchiral edges states. Thereby these states are distinguishable from other states in the quantum Hall wire, namely, extended edge states, two-dimensionally (2D) localized, quasi 1D localized, and 2D critical states. In the presence of spatially correlated random potential we find with the numerical transfermatrix method that the potential correlation results in a shift of quantized conductance plateaus in long wires proportional to the strength of the random potential. This shift is found to be insensitive to the strength of magnetic fields and the same for all plateaus. A semiclassical explanation of this effect is proposed. We conclude with an outlook on modfications of the quantum phase diagram due to the spin degree of freedom of the electrons and their interactions. We discuss the stability of the phase diagram at finite temperature.
引用
收藏
页码:393 / 408
页数:16
相关论文
共 50 条
  • [41] The connection between integer quantum hall effect and fractional quantum hall effect
    Koo, Je Huan
    Cho, Guangsup
    MODERN PHYSICS LETTERS B, 2007, 21 (2-3): : 109 - 113
  • [42] Hall conductivity of quantum wires with real magnetic barriers
    Wang, Ru-Zhi
    Yan, Xiao-Hong
    Xiangtan Daxue Ziran Kexue Xuebao, 2000, 22 (02):
  • [43] Interacting quantum topologies and the quantum Hall effect
    Balachandran, A. P.
    Gupta, Kumar S.
    Kuerkcueoglu, Seckin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (09): : 1327 - 1336
  • [44] Fractional quantum Hall effect and quantum symmetry
    Grensing, G
    PHYSICAL REVIEW B, 2000, 61 (08): : 5483 - 5498
  • [45] Quantum Hall effect in noncommutative quantum mechanics
    Dulat, Sayipjamal
    Li, Kang
    EUROPEAN PHYSICAL JOURNAL C, 2009, 60 (01): : 163 - 168
  • [46] Effect of Joule heating on current-induced asymmetries and breakdown of the quantum Hall effect in narrow Hall bars
    Gerhardts, Rolf R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 85 : 38 - 46
  • [47] QUANTUM FLUCTUATIONS IN THE QUANTUM HALL-EFFECT
    AOKI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 : 699 - 700
  • [48] Quantum graphs and the integer quantum Hall effect
    Goldman, N.
    Gaspard, P.
    PHYSICAL REVIEW B, 2008, 77 (02)
  • [49] Quantum Hall effect in noncommutative quantum mechanics
    Sayipjamal Dulat
    Kang Li
    The European Physical Journal C, 2009, 60 : 163 - 168
  • [50] The quantum Hall effect in quantum dot systems
    Beltukov, Y. M.
    Greshnov, A. A.
    27TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT27), PTS 1-5, 2014, 568