The mass of asymptotically hyperbolic Riemannian manifolds

被引:164
作者
Chrusciel, PT [1 ]
Herzlich, M
机构
[1] Univ Tours, CNRS, UMR 6083, Dept Math, Parc Grandmont, F-37200 Tours, France
[2] Univ Montpellier 2, CNRS, UMR 5030, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
关键词
D O I
10.2140/pjm.2003.212.231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a set of global invariants, called "mass integrals", which can be defined for a large class of asymptotically hyperbolic Riemannian manifolds. When the "boundary at infinity" has spherical topology one single invariant is obtained, called the mass; we show positivity thereof. We apply the definition to conformally compactifiable manifolds, and show that the mass is completion-independent. We also prove the result, closely related to the problem at hand, that conformal completions of conformally compactifiable manifolds are unique.
引用
收藏
页码:231 / 264
页数:34
相关论文
共 41 条
[1]   Scalar curvature rigidity for asymptotically locally hyperbolic manifolds [J].
Andersson, L ;
Dahl, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (01) :1-27
[2]  
[Anonymous], RELATIVITY GROUPS TO
[3]  
ASHTEKAR A, 1984, CLASSICAL QUANT GRAV, V1, pL39, DOI 10.1088/0264-9381/1/4/002
[4]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[5]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[6]  
Baum H., 1989, Annals of Global Analysis and Geometry, V7, P205, DOI 10.1007/BF00128299
[7]  
Baum H., 1989, ANN GLOB ANAL GEOM, V7, P141
[8]  
Besse A., 1987, ERGEBNISSE MATH GREN, V10
[9]  
BOUCHER W, 1984, PHYS REV D, V30, P2447, DOI 10.1103/PhysRevD.30.2447
[10]   SPINOR, DIRAC OPERATOR AND CHANGE OF THE METRIC [J].
BOURGUIGNON, JP ;
GAUDUCHON, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :581-599