NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

被引:31
作者
Schoen, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
LONG ARITHMETIC PROGRESSIONS; SUMSETS; SETS; PROOF; ERDOS;
D O I
10.1215/00127094-1276283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
[41]   An extension of James's compactness theorem [J].
Gasparis, I. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) :194-209
[42]   Parikh's Theorem and Descriptional Complexity [J].
Lavado, Giovanna J. ;
Pighizzini, Giovanni .
SOFSEM 2012: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2012, 7147 :361-372
[43]   An algebraic certificate for Budan's theorem [J].
Bembe, Daniel .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (06) :1360-1370
[44]   A Complex Analogue of Toda's Theorem [J].
Basu, Saugata .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (03) :327-362
[45]   Sklar's theorem in an imprecise setting [J].
Montes, Ignacio ;
Miranda, Enrique ;
Palessoni, Renato ;
Vicig, Paolo .
FUZZY SETS AND SYSTEMS, 2015, 278 :48-66
[46]   Chevalley's theorem in class Cr [J].
Barbancon, Gerard P. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :743-758
[47]   A generalization of Kneser's Addition Theorem [J].
De Vos, Matt ;
Goddyn, Luis ;
Mohar, Bojan .
ADVANCES IN MATHEMATICS, 2009, 220 (05) :1531-1548
[48]   A reversal of Schur's partition theorem [J].
Merca, Mircea .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
[49]   A Pedagogical Relook at Bertrand's Theorem [J].
Jeevitha, T. U. ;
Das, Sanjit .
RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2019, 24 (11) :1235-1251
[50]   Kirchhoff's theorem for Prym varieties [J].
Len, Yoav ;
Zakharov, Dmitry .
FORUM OF MATHEMATICS SIGMA, 2022, 10