NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

被引:31
作者
Schoen, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
LONG ARITHMETIC PROGRESSIONS; SUMSETS; SETS; PROOF; ERDOS;
D O I
10.1215/00127094-1276283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Inellipses of Convex Polygons, Brianchon's Theorem, and Bradley's Theorem
    Tupan, Alexandru
    AMERICAN MATHEMATICAL MONTHLY, 2021, 129 (01) : 4 - 23
  • [22] Computational Concentration of Measure: Optimal Bounds, Reductions, and More
    Etesami, Omid
    Mahloujifar, Saeed
    Mahmoody, Mohammad
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 345 - 363
  • [23] Computational Concentration of Measure: Optimal Bounds, Reductions, and More
    Etesami, Omid
    Mahloujifar, Saeed
    Mahmoody, Mohammad
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 345 - 363
  • [24] A maximal extension of the best-known bounds for the Furstenberg-Sarkozy theorem
    Rice, Alex
    ACTA ARITHMETICA, 2019, 187 (01) : 1 - 41
  • [25] ON THE NEAR-EQUALITY CASE OF THE POSITIVE MASS THEOREM
    Lee, Dan A.
    DUKE MATHEMATICAL JOURNAL, 2009, 148 (01) : 63 - 80
  • [26] A GENERAL NONLINEAR VERSION OF ROTH'S THEOREM ON THE REAL LINE
    Li, Xiang
    Yan, Dunyan
    Yu, Haixia
    Zhang, Xingsong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1119 - 1153
  • [27] A GUIDE TO CARLESON'S THEOREM
    Demeter, Ciprian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (01) : 169 - 212
  • [28] EUCLID'S THEOREM REDUX
    Delo, Ben
    Saidak, Filip
    FIBONACCI QUARTERLY, 2019, 57 (04): : 331 - 336
  • [29] SZEMEREDI'S THEOREM IN THE PRIMES
    Rimanic, Luka
    Wolf, Julia
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (02) : 443 - 457
  • [30] Loewner's "Forgotten" Theorem
    Albers, Peter
    Tabachnikov, Serge
    MATHEMATICAL INTELLIGENCER, 2022, 44 (01) : 7 - 11