Asymptotic analysis of phase field formulations of bending elasticity models

被引:32
作者
Wang, Xiaoqiang [1 ,2 ]
机构
[1] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
phase field; Willmore's problem; elastic bending energy; lipid membrane; asymptotic expansion; spectral method; numerical simulation; approximation;
D O I
10.1137/060663519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give the asymptotic analysis of sharp interface analysis of the phase field function in some phase field models for Willmore's problem and equilibrium lipid bilayer cell membrane problems. We derive the explicit expression of the asymptotic expansion of the phase.eld functions minimizing the Willmore energy. Based on the structure of the phase field functions obtained via the asymptotic analysis, we can then demonstrate the consistency of phase field models and the sharp interface models. Also some error estimates of energy and Euler number formulae are further analyzed. Some numerical experiments are performed to verify our assumptions and results. The results of this paper lead to a better understanding of the structure of the phase field functions in the phase field models for Willmore's problem and the equilibrium configurations of the lipid vesicle membranes.
引用
收藏
页码:1367 / 1401
页数:35
相关论文
共 27 条
[1]   Phase-field approach to three-dimensional vesicle dynamics [J].
Biben, T ;
Kassner, K ;
Misbah, C .
PHYSICAL REVIEW E, 2005, 72 (04)
[2]   Method for efficient shape parametrization of fluid membranes and vesicles [J].
Bloor, MIG ;
Wilson, MJ .
PHYSICAL REVIEW E, 2000, 61 (04) :4218-4229
[3]   A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J].
Chang, YC ;
Hou, TY ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) :449-464
[4]   Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory [J].
Dobereiner, HG ;
Evans, E ;
Kraus, M ;
Seifert, U ;
Wortis, M .
PHYSICAL REVIEW E, 1997, 55 (04) :4458-4474
[5]   Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions [J].
Du, Q ;
Liu, C ;
Wang, XQ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) :757-777
[6]   Retrieving topological information for phase field models [J].
Du, Q ;
Liu, C ;
Wang, XQ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (06) :1913-1932
[7]   Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation [J].
Du, Q ;
Liu, C ;
Ryham, R ;
Wang, X .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (03) :537-548
[8]   A phase field formulation of the Willmore problem [J].
Du, Q ;
Liu, C ;
Ryham, R ;
Wang, XQ .
NONLINEARITY, 2005, 18 (03) :1249-1267
[9]   A phase field approach in the numerical study of the elastic bending energy for vesicle membranes [J].
Du, Q ;
Liu, C ;
Wang, XQ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) :450-468
[10]  
DU Q, UNPUB NONLINEARITY