Parameter estimation and fractional derivatives of dengue transmission model

被引:21
作者
Windarto [1 ]
Khan, Muhammad Altaf [2 ]
Fatmawati [1 ]
机构
[1] Univ Airlangga, Fac Sci & Technol, Dept Math, Surabaya 60115, Indonesia
[2] Univ Free State, Fac Nat & Agr Sci, Bloemfontein, South Africa
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 03期
关键词
dengue model; parameter estimation; particle swarm optimization method; Atangana-Baleanu derivative;
D O I
10.3934/math.2020178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a parameter estimation of dengue fever transmission model using a particle swarm optimization method. This method is applied to estimate the parameters of the host-vector and SIR type dengue transmission models by using cumulative data of dengue patient in East Java province, Indonesia. Based on the parameter values, the basic reproduction number of both models are greater than one and obtained their value for SIR is R-0 = 1.4159 and for vector host is R-0 = 1.1474. We then formulate the models in fractional Atangana-Baleanu derivative that possess the property of nonlocal and nonsingular kernel that has been remained effective to many real-life problems. A numerical procedure for the solution of the model SIR model is shown. Some specific numerical values are considered to obtain the graphical results for both the SIR and Vector Host model. We show that the model vector host provide good results for data fitting than that of the SIR model.
引用
收藏
页码:2758 / 2779
页数:22
相关论文
共 29 条
[1]   Optimal control strategies for dengue transmission in pakistan [J].
Agusto, F. B. ;
Khan, M. A. .
MATHEMATICAL BIOSCIENCES, 2018, 305 :102-121
[2]   Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization [J].
Akman D. ;
Akman O. ;
Schaefer E. .
Journal of Applied Mathematics, 2018, 2018
[3]   An optimal control problem arising from a dengue disease transmission model [J].
Aldila, Dipo ;
Goetz, Thomas ;
Soewono, Edy .
MATHEMATICAL BIOSCIENCES, 2013, 242 (01) :9-16
[4]   Modeling the dynamics of Hepatitis E with optimal control [J].
Alzahrani, E. O. ;
Khan, M. A. .
CHAOS SOLITONS & FRACTALS, 2018, 116 :287-301
[5]  
[Anonymous], 2018, PRACTICAL GENETIC AL, DOI [DOI 10.1002/JMRS.288, DOI 10.1002/0471671746]
[6]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[7]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[8]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, V5
[9]   A fractional calculus based model for the simulation of an outbreak of dengue fever [J].
Diethelm, Kai .
NONLINEAR DYNAMICS, 2013, 71 (04) :613-619
[10]  
Eberhart R., 1995, MHS95 P 6 INT S MICR, P39