A Review of Performance Attenuation and Mitigation Strategies of Lithium-Ion Batteries

被引:74
|
作者
Liu, Jianwen [1 ,2 ,3 ]
Yue, Ming [1 ,2 ,3 ]
Wang, Shiquan [1 ,2 ,3 ]
Zhao, Yufeng [4 ]
Zhang, Jiujun [4 ]
机构
[1] Hubei Univ, Collaborat Innovat Ctr Adv Organ Chem, Mat Coconstructed Prov & Minist, Wuhan 430062, Peoples R China
[2] Hubei Univ, Key Lab Synth & Applicat Organ Funct Mol, Minist Educ, Wuhan 430062, Peoples R China
[3] Hubei Univ, Coll Chem & Chem Engn, Wuhan 430062, Peoples R China
[4] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium ion batteries; mitigation strategies; performance attenuation; SOLID-ELECTROLYTE INTERPHASE; COATED SILICON NANOPARTICLES; RECHARGEABLE LITHIUM; HIGH-ENERGY; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; ANODE MATERIALS; CURRENT COLLECTOR; CYCLE LIFE; HIGH-POWER;
D O I
10.1002/adfm.202107769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Given their high energy/power densities and long cycle time, lithium-ion batteries (LIBs) have become one type of the most practical power sources for electric/hybrid electric automobile, portable electronics, and power plants. However, the performance attenuation of LIBs has limited their applications in many energy-related systems. In this review, the performance attenuation mechanisms of LIBs and the effort in development of mitigation strategies are comprehensively reviewed in terms of the commonly used cathode materials and anode materials, electrolytes, and current collectors. Several challenges are analyzed and several further research directions are also proposed for overcoming the challenges toward improvement of LIB performance.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries
    Shahid, Seham
    Agelin-Chaab, Martin
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 16
  • [2] Fault mitigation and diagnosis for lithium-ion batteries: a review
    Rao, K. Dhananjay
    Lakshmi Pujitha, N. Naga
    Rao Ranga, MadhuSudana
    Manaswi, Ch.
    Dawn, Subhojit
    Ustun, Taha Selim
    Kalam, Akhtar
    Frontiers in Energy Research, 2025, 13
  • [3] Prelithiation strategies for enhancing the performance of lithium-ion batteries
    Zhang, Yiming
    Shen, Huyan
    Li, Yanyu
    Hu, Yongsheng
    Li, Yao
    RSC ADVANCES, 2025, 15 (02) : 1249 - 1274
  • [4] Strategies of binder design for high-performance lithium-ion batteries: a mini review
    Yan-Bo Wang
    Qi Yang
    Xun Guo
    Shuo Yang
    Ao Chen
    Guo-Jin Liang
    Chun-Yi Zhi
    Rare Metals, 2022, 41 (03) : 745 - 761
  • [5] Strategies of binder design for high-performance lithium-ion batteries: a mini review
    Yan-Bo Wang
    Qi Yang
    Xun Guo
    Shuo Yang
    Ao Chen
    Guo-Jin Liang
    Chun-Yi Zhi
    Rare Metals, 2022, 41 : 745 - 761
  • [6] Strategies of binder design for high-performance lithium-ion batteries: a mini review
    Wang, Yan-Bo
    Yang, Qi
    Guo, Xun
    Yang, Shuo
    Chen, Ao
    Liang, Guo-Jin
    Zhi, Chun-Yi
    RARE METALS, 2022, 41 (03) : 745 - 761
  • [7] Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries
    Gao, Yizhao
    Zhang, Xi
    Cheng, Qiyu
    Guo, Bangjun
    Yang, Jun
    IEEE ACCESS, 2019, 7 : 43511 - 43524
  • [8] Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries
    Lin, Xianke
    Khosravinia, Kavian
    Hu, Xiaosong
    Li, Ju
    Lu, Wei
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 87
  • [9] Benefits of performance standards for lithium-ion and lithium-ion polymer batteries
    Thomas, G
    SEVENTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, PROCEEDINGS, 2002, : 223 - 225
  • [10] A review of the electrochemical performance of alloy anodes for lithium-ion batteries
    Zhang, Wei-Jun
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 13 - 24