Burst Denoising with Kernel Prediction Networks

被引:285
作者
Mildenhall, Ben [1 ,2 ,3 ]
Barron, Jonathan T. [2 ]
Chen, Jiawen [2 ]
Sharlet, Dillon [2 ]
Ng, Ren [1 ]
Carroll, Robert [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Google Res, Mountain View, CA 94043 USA
[3] Google, Mountain View, CA 94043 USA
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
关键词
D O I
10.1109/CVPR.2018.00265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.
引用
收藏
页码:2502 / 2510
页数:9
相关论文
共 28 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]  
[Anonymous], 2016, NIPS
[3]  
[Anonymous], 2016, NIPS
[4]  
[Anonymous], SIGGRAPH
[5]  
[Anonymous], ECCV
[6]  
[Anonymous], 1990, TPAMI
[7]  
[Anonymous], ACM TOG
[8]  
[Anonymous], 2016, OPENIMAGES PUBLIC DA
[9]  
Bako Steve, 2017, SIGGRAPH
[10]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65