Scaled Entropy for Dynamical Systems

被引:11
作者
Zhao, Yun [1 ]
Pesin, Yakov [2 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
DIMENSION;
D O I
10.1007/s10955-014-1133-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to characterize the complexity of a system with zero entropy we introduce the notions of scaled topological and metric entropies. We allow asymptotic rates of the general form determined by an arbitrary monotonically increasing "scaling" sequence . This covers the standard case of exponential scale corresponding to as well as the cases of zero and infinite entropy. We describe some basic properties of the scaled entropy including the inverse variational principle for the scaled metric entropy. Furthermore, we present some examples from symbolic and smooth dynamics that illustrate that systems with zero entropy may still exhibit various levels of complexity.
引用
收藏
页码:447 / 475
页数:29
相关论文
共 19 条
[1]   Entropy dimension and variational principle [J].
Ahn, Young-Ho ;
Dou, Dou ;
Park, Kyewon Koh .
STUDIA MATHEMATICA, 2010, 199 (03) :295-309
[2]  
BRIN M, 1983, LECT NOTES MATH, V1007, P30
[3]  
Cassaigne J., 2013, LECT NOTES COMPUTER, V2450, P173
[4]   Zero Entropy Systems [J].
Cheng, Wen-Chiao ;
Li, Bing .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (05) :1006-1021
[5]  
De Carvalho M., 1997, Portugal. Math, V54, P19
[6]  
Dou D., 2013, ARXIV13127225
[7]   ENTROPY DIMENSION OF TOPOLOGICAL DYNAMICAL SYSTEMS [J].
Dou, Dou ;
Huang, Wen ;
Park, Kyewon Koh .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) :659-680
[8]  
Ferenczi S, 2007, DISCRETE CONT DYN S, V17, P133
[9]  
Fomenko A.T., 1988, INTEGRABILITY NONINT, V31
[10]   The first return time properties of an irrational rotation [J].
Kim, Dong Han ;
Park, Kyewon Koh .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :3941-3951