A tangency principle and applications

被引:21
作者
Fontenele, F [1 ]
Silva, SL
机构
[1] Univ Fed Fluminense, Inst Matemat, Dept Geomat, BR-24020005 Niteroi, RJ, Brazil
[2] Univ Estatual Do Rio De Janeiro, IME, Dept Estruturas Matemat, BR-20550013 Rio De Janeiro, Brazil
关键词
D O I
10.1215/ijm/1258138264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain a tangency principle for hypersurfaces, with not necessarily constant r-mean curvature function H,, of an arbitrary Riemannian manifold. That is, we obtain sufficient geometric conditions for two submanifolds of a Riemannian manifold to coincide, as a set, in a neighborhood of a tangency point. As applications of our tangency principle, we obtain, under certain conditions on the function Hr, sharp estimates on the size of the greatest ball that fits inside a connected compact hypersurface embedded in a space form of constant sectional curvature c less than or equal to 0 and on the size of the smallest ball that encloses the image of an immersion of a compact Riemannian manifold into a Riemannian manifold with sectional curvatures limited from above. This generalizes results of Koutroufiotis, Coghlan-Itokawa, Pui-Fai Leung, Vlachos and Markvorsen. We also generalize a result of Serrin. Our techniques permit us to extend results of Hounie-Leite.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 15 条
[1]  
ALEXANDROV A, 1962, VESTNIK LENINGRAD U, V11, P341, DOI DOI 10.1090/TRANS2/021/09
[2]  
Blaschke W., 1956, KREIS UND KUGEL
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[4]   ON THE SECTIONAL CURVATURE OF COMPACT HYPERSURFACES [J].
COGHLAN, L ;
ITOKAWA, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :215-221
[5]  
COGHLAN L, 1992, J GEOM ANAL, V2, P195
[6]  
DEARAUJO HJM, 1994, THESIS U FEDERAL PER
[7]  
GARDING L, 1959, J MATH MECH, V8, P957
[8]  
Gelfand IM, 1961, LECT LINEAR ALGEBRA
[9]  
HOUNIE J, 1995, J DIFFER GEOM, V41, P247
[10]   AN ESTIMATE FOR THE CURVATURE OF BOUNDED SUB-MANIFOLDS [J].
JORGE, L ;
KOUTROUFIOTIS, D .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :711-725