On Particle Filters with High Complexity Combinatorial Likelihood Functions

被引:0
作者
Ferguson, Samuel J. [1 ]
Silver, Jeffrey [1 ]
Streit, Roy [1 ]
机构
[1] Metron Inc, 1818 Lib St,Suite 600, Reston, VA 20190 USA
来源
2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022) | 2022年
关键词
Particle filters; assignment; analytic combinatorics; Cauchy integral; generating functional; cross-derivative; saddle point; stochastic flow; intensity filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Saddle point approximation methods are proposed for particle filters whose likelihood functions have high computational complexity due to combinatorial enumerations of the kind that arises in assignment problems, e.g., in multitarget, multisensor, and smoothing filters. Using techniques drawn from random matrix theory, it is shown that the computational complexity of the approximation depends on the cube of the number of measurements or the number of targets, whichever is smaller, for the class of probabilistic data association filters. The saddle point approximation method is also applicable to the class of stochastic flow filters.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] A Low Computational Complexity JPDA Filter With Superposition
    Angle, R. Blair
    Streit, Roy L.
    Efe, Murat
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1031 - 1035
  • [2] [Anonymous], 1964, INTRO SEVERAL COMPLE
  • [3] Bakut P. A., 1980, DETECTION MOVING OBJ
  • [4] BAKUT PA, 1976, ENG CYBERN, V14, P148
  • [5] Coraluppi S., 2000, P NAT S SENS DAT FUS
  • [6] Daum F, 2003, AEROSP CONF PROC, P1979
  • [7] Drummond O. E., 1975, THESIS U CALIFORNIA
  • [8] Feller W., 1966, INTRO PROBABILITY TH
  • [9] Flajolet P., 2009, ANAL COMBINATORICS
  • [10] Hille E., 1959, ANAL FUNCTION THEORY, V1