Ruled Laguerre minimal surfaces

被引:4
作者
Skopenkov, Mikhail [1 ,2 ]
Pottmann, Helmut [2 ]
Grohs, Philipp [3 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[2] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[3] ETH Zentrum, Seminar Appl Math, CH-8092 Zurich, Switzerland
基金
奥地利科学基金会;
关键词
Laguerre geometry; Laguerre minimal surface; Ruled surface; Biharmonic function; DIFFERENTIAL GEOMETRY; MESHES;
D O I
10.1007/s00209-011-0953-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Laguerre minimal surface is an immersed surface in being an extremal of the functional . In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces , where are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.
引用
收藏
页码:645 / 674
页数:30
相关论文
共 32 条
[1]  
[Anonymous], 2008, GRADUATE STUDIES MAT
[2]  
[Anonymous], 1929, Vorlesungen uber Differentialgeometrie
[3]  
Balk MB, 1970, RUSS MATH SURV, V25, P201, DOI [10.1070/RM1970v025n05ABEH003796, DOI 10.1070/RM1970V025N05ABEH003796]
[4]  
Blaschke W., 1924, ABH MATH SEM HAMBURG, V3, P195, DOI DOI 10.1007/BF02954624
[5]  
Blaschke W., 1925, ABH MATH SEM HAMBURG, V4, P1
[6]   On organizing principles of discrete differential geometry. Geometry of spheres [J].
Bobenko, A. I. ;
Suris, Yu. B. .
RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (01) :1-43
[7]   Minimal surfaces from circle patterns: Geometry from combinatorics [J].
Bobenko, Alexander I. ;
Hoffmann, Tim ;
Springborn, Boris A. .
ANNALS OF MATHEMATICS, 2006, 164 (01) :231-264
[8]  
Cecil T.E., 1992, Lie Sphere Geometry: With Applications to Submanifolds
[9]  
Dorfmeister J., ADV STUDIES PURE MAT, V51
[10]   CONTINUATION OF BIHARMONIC FUNCTIONS BY REFLECTION [J].
DUFFIN, RJ .
DUKE MATHEMATICAL JOURNAL, 1955, 22 (02) :313-324