Algebraic deformation quantization of Leibniz algebras

被引:4
作者
Alexandre, Charles [1 ]
Bordemann, Martin [2 ]
Riviere, Salim [3 ]
Wagemann, Friedrich [4 ]
机构
[1] Univ Strasbourg, IRMA, Strasbourg, France
[2] Univ Haute Alsace, Lab Math & Applicat, Mulhouse, France
[3] Univ Angers, Fac Sci, Lab Angevin Rech Math LAREMA, Angers, France
[4] Univ Nantes, Fac Sci & Tech, Lab Math Jean Leray, 2 Rue Houssiniere, F-44322 Nantes 3, France
关键词
deformation quantization; deformation cohomology; Leibniz algebra; rack bialgebra; COHOMOLOGY; RACKS;
D O I
10.1080/00927872.2018.1461886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we focus on a certain self-distributive multiplication on coalgebras, which leads to so-called rack bialgebra. We construct canonical rack bialgebras (some kind of enveloping algebras) for any Leibniz algebra. Our motivation is deformation quantization of Leibniz algebras in the sense of [6]. Namely, the canonical rack bialgebras we have constructed for any Leibniz algebra lead to a simple explicit formula of the rack-star-product on the dual of a Leibniz algebra recently constructed by Dherin and Wagemann in [6]. We clarify this framework setting up a general deformation theory for rack bialgebras and show that the rack-star-product turns out to be a deformation of the trivial rack bialgebra product.
引用
收藏
页码:5179 / 5201
页数:23
相关论文
共 20 条
[1]  
Alexandre C., 2016, J GEN LIE THEORY APP, V10
[2]  
[Anonymous], LIE GROUPS LIE ALGEB
[3]  
Carter JS, 2008, J HOMOTOPY RELAT STR, V3, P13
[4]   Symplectic microgeometry II: generating functions [J].
Cattaneo, Alberto S. ;
Dherin, Benoit ;
Weinstein, Alan .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04) :507-536
[5]   On the conjectural Leibniz cohomology for groups [J].
Covez, Simon .
JOURNAL OF K-THEORY, 2012, 10 (03) :519-563
[6]   Deformation quantization of Leibniz algebras [J].
Dherin, Benoit ;
Wagemann, Friedrich .
ADVANCES IN MATHEMATICS, 2015, 270 :21-48
[7]  
DIXMIER J, 1974, ALGEBRES ENVELOPPANT
[8]  
Fenn R., 1992, Journal of Knot Theory and Its Ramifications, V1, P343
[9]   AN EXPLICIT STAR-PRODUCT ON THE COTANGENT BUNDLE OF A LIE GROUP [J].
GUTT, S .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (03) :249-258
[10]  
Kinyon MK, 2007, J LIE THEORY, V17, P99